A resurgence of research on ferroelectric materials has recently occurred due to their potential to enhance the performance of memory and logic. For the design and commercialization of such technologies, it is important to understand the physical behavior of ferroelectrics and the interplay with device size, geometry, and fabrication processes. Here, we report a study of geometric factors that can influence the measurement of the remanent ferroelectric polarization, an important measurement for understanding wakeup, retention, and endurance in ferroelectric technologies. The areal size scaling of W/Hf0.5Zr0.5O2/W capacitors is compared in two typical structures: an island top electrode with a continuous ferroelectric layer and an island top electrode/ferroelectric layer (etched ferroelectric layer). Error in the evaluation of the switched area leads to anomalous scaling trends and increasing apparent remanent polarization as capacitor sizes decrease, most strongly in continuous ferroelectric layer capacitors. Using TEM and electric field simulations, this is attributed to two effects: a processing artifact from ion milling that creates a foot on the top electrode and a fringe electric field penetrating outside of the capacitor area. With the correction of the switching area, the 2Pr for both samples agree (∼32 μC cm−2) and is invariant in the capacitor sizes used (down to 400 nm diameter). Our work demonstrates that the determination of the actual capacitor structure and local electric field is needed to evaluate the intrinsic ferroelectric behavior at the nanoscale.

1.
K.
Toprasertpong
,
K.
Tahara
,
Y.
Hikosaka
,
K.
Nakamura
,
H.
Saito
,
M.
Takenaka
, and
S.
Takagi
, “
Low operating voltage, improved breakdown tolerance, and high endurance in Hf0.5Zr0.5O2 ferroelectric capacitors achieved by thickness scaling down to 4 nm for embedded ferroelectric memory
,”
ACS Appl. Mater. Interfaces
14
(
45
),
51137
51148
(
2022
).
2.
S. S.
Cheema
,
D.
Kwon
,
N.
Shanker
,
R.
dos Reis
,
S.-L.
Hsu
,
J.
Xiao
,
H.
Zhang
,
R.
Wagner
,
A.
Datar
,
M. R.
McCarter
,
C. R.
Serrao
,
A. K.
Yadav
,
G.
Karbasian
,
C.-H.
Hsu
,
A. J.
Tan
,
L.-C.
Wang
,
V.
Thakare
,
X.
Zhang
,
A.
Mehta
,
E.
Karapetrova
,
R. V.
Chopdekar
,
P.
Shafer
,
E.
Arenholz
,
C.
Hu
,
R.
Proksch
,
R.
Ramesh
,
J.
Ciston
, and
S.
Salahuddin
, “
Enhanced ferroelectricity in ultrathin films grown directly on silicon
,”
Nature
580
(
7804
),
478
482
(
2020
).
3.
K.
Toprasertpong
,
M.
Takenaka
, and
S.
Takagi
, “
Memory window in ferroelectric field-effect transistors: Analytical approach
,”
IEEE Trans. Electron Devices
69
(
12
),
7113
7119
(
2022
).
4.
P.-S.
Chen
and
C. W.
Liu
, “
Theoretical calculation of ferroelectric Hf1−xZrxO2 by first-principle molecular dynamic simulation
,”
Mater. Res. Express
6
(
9
),
095045
(
2019
).
5.
D.
Wang
,
Y.
Zhang
,
J.
Wang
,
C.
Luo
,
M.
Li
,
W.
Shuai
,
R.
Tao
,
Z.
Fan
,
D.
Chen
,
M.
Zeng
,
J. Y.
Dai
,
X. B.
Lu
, and
J.-M.
Liu
, “
Enhanced ferroelectric polarization with less wake-up effect and improved endurance of Hf0.5Zr0.5O2 thin films by implementing W electrode
,”
J. Mater. Sci. Technol.
104
,
1
7
(
2022
).
6.
S. J.
Kim
,
D.
Narayan
,
J.-G.
Lee
,
J.
Mohan
,
J. S.
Lee
,
J.
Lee
,
H. S.
Kim
,
Y.-C.
Byun
,
A. T.
Lucero
,
C. D.
Young
,
S. R.
Summerfelt
,
T.
San
,
L.
Colombo
, and
J.
Kim
, “
Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget
,”
Appl. Phys. Lett.
111
(
24
),
242901
(
2017
).
7.
Z.
Cai
,
K.
Toprasertpong
,
Z.
Liu
,
M.
Takenaka
, and
S.
Takagi
, “
Understanding HZO thickness scaling in Si FeFETs: Low operating voltage, fast wake-up, and suppressed charge trapping
,”
IEEE Trans. Electron Devices
71
(
6
),
3633
3639
(
2024
).
8.
Tahara
et al, “
Strategy toward HZO BEOL-FeRAM with low-voltage operation (≤1.2 V), low process temperature, and high endurance by thickness scaling
,” in
IEEE Conference Publication
, 2021 Symposium on VLSI Technology (
IEEE
,
2021
).
9.
H.
Kohlstedt
,
Y.
Mustafa
,
A.
Gerber
,
A.
Petraru
,
M.
Fitsilis
,
R.
Meyer
,
U.
Böttger
, and
R.
Waser
, “
Current status and challenges of ferroelectric memory devices
,”
Microelectron. Eng.
80
,
296
304
(
2005
).
10.
T.
Mikolajick
,
U.
Schroeder
, and
S.
Slesazeck
, “
The past, the present, and the future of ferroelectric memories
,”
IEEE Trans. Electron Devices
67
(
4
),
1434
1443
(
2020
).
11.
M.-K.
Kim
,
I.-J.
Kim
, and
J.-S.
Lee
, “
CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory
,”
Sci. Adv.
7
(
3
),
eabe1341
(
2021
).
12.
Y.-C.
Luo
,
A.
Lu
,
J.
Hur
,
S.
Li
, and
S.
Yu
, “
Design of non-volatile capacitive crossbar array for in-memory computing
,” in
IEEE International Memory Workshop (IMW)
,
2021
.
13.
J.
Hur
,
Y.-C.
Luo
,
A.
Lu
,
T.-H.
Wang
,
S.
Li
,
A. I.
Khan
, and
S.
Yu
, “
Nonvolatile capacitive crossbar array for in-memory computing
,”
Adv. Intell. Syst.
4
(
8
),
2100258
(
2022
).
14.
X.
Lyu
,
M.
Si
,
P. R.
Shrestha
,
J. P.
Campbell
,
K. P.
Cheung
, and
P. D.
Ye
, “
Record fast polarization switching observed in ferroelectric hafnium oxide crossbar arrays
,” in
IEEE Silicon Nanoelectronics Workshop (SNW)
(
IEEE
,
Honolulu, HI
,
2020
).
15.
Y.
Jiang
,
Z.
Tian
,
P.
Kavle
,
H.
Pan
, and
L. W.
Martin
, “
Effect of fabrication processes on BaTiO3 capacitor properties
,”
APL Mater.
12
(
4
),
041116
(
2024
).
16.
F.
Huang
,
B.
Saini
,
L.
Wan
,
H.
Lu
,
X.
He
,
S.
Qin
,
W.
Tsai
,
A.
Gruverman
,
A. C.
Meng
,
H.-S. P.
Wong
,
P. C.
McIntyre
, and
S.
Wong
, “
Dimensional scaling of ferroelectric properties of hafnia-zirconia thin films: Electrode interface effects
,”
ACS Nano
18
(
27
),
17600
17610
(
2024
).
17.
N.
Ramaswamy
,
A.
Calderoni
,
J.
Zahurak
,
G.
Servalli
,
A.
Chavan
,
S.
Chhajed
,
M.
Balakrishnan
,
M.
Fischer
,
M.
Hollander
,
D. P.
Ettisserry
,
A.
Liao
,
K.
Karda
,
M.
Jerry
,
M.
Mariani
,
A.
Visconti
,
B. R.
Cook
,
B. D.
Cook
,
D.
Mills
,
A.
Torsi
,
C.
Mouli
,
E.
Byers
,
M.
Helm
,
S.
Pawlowski
,
S.
Shiratake
, and
N.
Chandrasekaran
, “
NVDRAM: A 32Gb dual layer 3D stacked non-volatile ferroelectric memory with near-DRAM performance for demanding AI workloads
,” in
International Electron Devices Meeting (IEDM)
(
IEEE
,
San Francisco, CA
,
2023
).
18.
J.
Van Houdt
, “
3D memories and ferroelectrics
,” in
IEEE International Memory Workshop (IMW)
,
2017
.
You do not currently have access to this content.