Herein, we employed inductively coupled plasma enhanced chemical vapor deposition using a hexamethyldisiloxane/O2 precursor to deposit SiO2 with electrical double layer capacitance on SiNx forming SiO2/SiNx stacked films as a dielectric layer, achieving high-performance synaptic transistors. The effect of O2 concentration during SiO2 deposition on the transistor performance was investigated. The results of Fourier transform infrared spectroscopy and x-ray photoemission spectroscopy confirm that increasing O2 concentration during deposition boosts the amounts of protons moving between the bridging oxygen in the Si–O–Si network, improving the electrical double layer capacitance of SiO2. Furthermore, SiNx in the stacked structure exhibits a higher relative permittivity than SiO2, resulting in a more concentrated electric field within the SiO2 layer, facilitating proton ionization. SiO2/SiNx stacked film with SiO2 deposited at the oxygen flow rate of 150  sccm exhibited the maximum capacitance of 2.87 μF/cm2 at 4 Hz. The transistor with SiO2 deposited at the oxygen flow rate of 150  sccm achieved the maximum paired pulse facilitation index of 132.9% and the maximum A50/A1 index of 155.4%. This work demonstrates that SiO2 deposited via inductively coupled plasma enhanced chemical vapor deposition using a hexamethyldisiloxane/O2 precursor for application potential in artificial neuromorphic computing.

1.
G.
Zhang
,
H.
Yu
,
Y.
Shi
,
W.
Liu
,
X.
Shi
,
C.
Jin
,
Y.
Xu
,
Z.
Li
,
S.
Huang
,
J.
Sun
, and
J.
Yang
,
Appl. Phys. Lett.
123
(
2
),
023702
(
2023
).
2.
Y.
Liu
,
G.
Feng
,
Q.
Zhu
,
Y.
Xu
,
S.
Hao
,
K.
Qu
,
B.
Tian
, and
C.
Duan
,
J. Appl. Phys.
135
(
4
),
045501
(
2024
).
3.
C.
Mead
,
Proc. IEEE
78
(
10
),
1629
(
1990
).
4.
H.
Xie
,
G.
Miao
,
G.
Liu
, and
F.
Shan
,
Appl. Phys. Lett.
124
(
23
),
233301
(
2024
).
5.
J.
Lei
,
W.
Dou
,
W.
Hou
,
X.
Gan
,
G.
Jiang
,
Y.
Yin
,
J.
Yang
,
P.
Deng
, and
D.
Tang
,
Appl. Phys. Lett.
124
(
3
),
033504
(
2024
).
6.
X.
Chen
,
E.
Li
,
X.
Zhang
,
Q.
Chen
,
R.
Yu
,
Y.
Ye
,
H.
Chen
, and
T.
Guo
,
IEEE Electron Device Lett.
43
(
3
),
394
(
2022
).
7.
H.
Ling
,
D. A.
Koutsouras
,
S.
Kazemzadeh
,
Y.
van de Burgt
,
F.
Yan
, and
P.
Gkoupidenis
,
Appl. Phys. Rev.
7
(
1
), 011307 (
2020
).
8.
Y. L.
He
,
Y.
Yang
,
S.
Nie
,
R.
Liu
, and
Q.
Wan
,
J. Mater. Chem. C
6
(
20
),
5336
(
2018
).
9.
S.
Dai
,
X.
Liu
,
Y.
Liu
,
Y.
Xu
,
J.
Zhang
,
Y.
Wu
,
P.
Cheng
,
L.
Xiong
, and
J.
Huang
,
Adv. Mater.
35
(
39
),
e2300329
(
2023
).
10.
X.
Wan
,
Y.
Yang
,
P.
Feng
,
Y.
Shi
, and
Q.
Wan
,
IEEE Electron Device Lett.
37
(
3
),
299
(
2016
).
11.
R.
Yu
,
Y.
Yan
,
E.
Li
,
X.
Wu
,
X.
Zhang
,
J.
Chen
,
Y.
Hu
,
H.
Chen
, and
T.
Guo
,
Mater. Horiz.
8
(
10
),
2797
(
2021
).
12.
G.
Liu
,
Q.
Li
,
W.
Shi
,
Y.
Liu
,
K.
Liu
,
X.
Yang
,
M.
Shao
,
A.
Guo
,
X.
Huang
,
F.
Zhang
,
Z.
Zhao
,
Y.
Guo
, and
Y.
Liu
,
Adv. Funct. Mater.
32
(
27
),
2200959
(
2022
).
13.
S. I.
Cho
,
J. B.
Jeon
,
J. H.
Kim
,
S. H.
Lee
,
W.
Jeong
,
J.
Kim
,
G.
Kim
,
K. M.
Kim
, and
S. H. K.
Park
,
J. Mater. Chem. C
9
(
32
),
10243
(
2021
).
14.
J.
Sun
,
Q.
Wan
,
A.
Lu
, and
J.
Jiang
,
Appl. Phys. Lett.
95
(
22
),
222108
(
2009
).
15.
J.
Jiang
,
Q.
Wan
,
J.
Sun
, and
A.
Lu
,
Appl. Phys. Lett.
95
(
15
),
152114
(
2009
).
16.
C.
Liu
,
H.
Qin
,
Y.
Liu
,
S.
Wei
,
H.
Wang
, and
Y.
Zhao
,
Mater. Sci. Semicond. Process.
121
,
105390
(
2021
).
17.
Y.
Liu
,
H.
Qin
,
C.
Peng
,
J.
Guo
,
Y.
Chang
,
K.
Liu
, and
Y.
Zhao
,
Appl. Phys. Lett.
124
(
8
),
082102
(
2024
).
18.
P.
Raynaud
,
B.
Despax
,
Y.
Segui
, and
H.
Caquineau
,
Plasma Processes Polym.
2
(
1
),
45
(
2005
).
19.
M.
Creatore
,
F.
Palumbo
, and
R.
d'Agostino
,
Plasmas Polym.
7
(
3
),
291
(
2002
).
20.
D. S.
Wavhal
,
J.
Zhang
,
M. L.
Steen
, and
E. R.
Fisher
,
Plasma Processes Polym.
3
(
3
),
276
(
2006
).
21.
J.
Schäfer
,
K.
Fricke
,
F.
Mika
,
Z.
Pokorná
,
L.
Zajíčková
, and
R.
Foest
,
Thin Solid Films
630
,
71
(
2017
).
22.
A.
Hashemi
and
A.
Bahari
,
Appl. Phys. A
123
(
8
), 535 (
2017
).
23.
J. J.
Ong
,
D. P.
Tran
,
W. L.
Chiu
,
S. C.
Yang
,
M. H.
Yu
,
F. C.
Shen
,
H. H.
Chang
,
O. H.
Lee
,
C. W.
Chiang
,
C. H.
Wang
,
W. W.
Wu
, and
C.
Chen
,
Surf. Interfaces
40
,
103076
(
2023
).
24.
F.
Fanelli
,
S.
Lovascio
,
R.
d'Agostino
,
F.
Arefi‐Khonsari
, and
F.
Fracassi
,
Plasma Processes Polym.
7
(
7
),
535
(
2010
).
25.
X.
Ma
,
J.
Zhang
,
W.
Cai
,
H.
Wang
,
J.
Wilson
,
Q.
Wang
,
Q.
Xin
, and
A.
Song
,
Sci. Rep.
7
(
1
),
809
(
2017
).
26.
Y.-F.
Chang
,
B.
Fowler
,
Y.-C.
Chen
, and
J. C.
Lee
,
Prog. Solid State Chem.
44
(
3
),
75
(
2016
).
27.
B. B.
Burton
,
S. W.
Kang
,
S. W.
Rhee
, and
S. M.
George
,
J. Phys. Chem. C
113
(
19
),
8249
(
2009
).
28.
A.
Gangwar
and
B.
Mazhari
,
IEEE Trans. Electron Devices
63
(
12
),
4776
(
2016
).
29.
Y.
Zuo
,
X.
Shi
,
X.
Zhou
,
X.
Xu
,
J.
Wang
,
P.
Chen
,
X.
Sun
, and
H.
Peng
,
Adv. Funct. Mater.
30
(
50
), 2005200 (
2020
).
30.
K. J.
Baeg
,
D.
Khim
,
J.
Kim
,
B. D.
Yang
,
M.
Kang
,
S. W.
Jung
,
I. K.
You
,
D. Y.
Kim
, and
Y. Y.
Noh
,
Adv. Funct. Mater.
22
(
14
),
2915
(
2012
).
31.
V. M.
Ho
,
J. A.
Lee
, and
K. C.
Martin
,
Science
334
(
6056
),
623
(
2011
).
32.
L. Q.
Zhu
,
C. J.
Wan
,
L. Q.
Guo
,
Y.
Shi
, and
Q.
Wan
,
Nat. Commun.
5
,
3158
(
2014
).
33.
B.
Huang
,
C.
Deng
,
L.
Lan
,
Y.
Li
,
B.
Chen
,
J.
Xu
,
J.
Pan
,
K.
Shen
,
J.
Huang
,
Q.
Wan
,
J.
Peng
, and
Y.
Cao
,
Nano Energy
128
, 109891 (
2024
).
34.
D.-H.
Kim
and
S.-M.
Yoon
,
Mater. Sci. Semicond. Process.
153
, 107182 (
2023
).
35.
S. H.
Kim
and
W. J.
Cho
,
Polymers
14
(
7
),
1372
(
2022
).
36.
S.-Y.
Min
and
W.-J.
Cho
,
IEEE Electron Device Lett.
42
(
1
),
70
(
2021
).
You do not currently have access to this content.