SrTiO3 (STO) displays a broad spectrum of physical properties, including superconductivity, ferroelectricity, and photoconductivity, making it a standout semiconductor material. Despite extensive research, the oxygen partial pressure-dependent conductivity in STO has remained elusive. This study leverages first-principles calculations and systematically investigates the intrinsic defect properties of STO. The results reveal that VO, VSr, and TiSr are the dominant intrinsic defects, influencing STO's conductivity under varying O chemical potentials (oxygen partial pressures). Under O-poor condition, VO is the predominant donor, while VSr is the main acceptor. As the oxygen pressure increases, TiSr emerges as a critical donor defect under O-rich conditions, significantly affecting the conductivity. Additionally, the study elucidates the abnormal phenomenon where VTi, typically an acceptor, exhibits donor-like behavior due to the formation of O-trimer. This work offers a comprehensive understanding of how intrinsic defects tune the Fermi level, thereby altering STO's conductivity from metallic to n-type and eventually to p-type across different O chemical potentials. These insights resolve the long-standing issue of oxygen partial pressure-dependent conductivity and explain the observed metallic conductivity in oxygen-deficient STO.

1.
J. F.
Schooley
,
W. R.
Hosler
, and
M. L.
Cohen
, “
Superconductivity in semiconducting SrTiO3
,”
Phys. Rev. Lett.
12
,
474
(
1964
).
2.
J. H.
Haeni
,
P.
Irvin
,
W.
Chang
,
R.
Uecker
,
P.
Reiche
,
Y. L.
Li
,
S.
Choudhury
,
W.
Tian
,
M. E.
Hawley
,
B.
Craigo
,
A. K.
Tagantsev
,
X. Q.
Pan
,
S. K.
Streiffer
,
L. Q.
Chen
,
S. W.
Kirchoefer
,
J.
Levy
, and
D. G.
Schlom
, “
Room-temperature ferroelectricity in strained SrTiO3
,”
Nature
430
,
758
(
2004
).
3.
H. W.
Jang
,
A.
Kumar
,
S.
Denev
,
M. D.
Biegalski
,
P.
Maksymovych
,
C. W.
Bark
,
C. T.
Nelson
,
C. M.
Folkman
,
S. H.
Baek
,
N.
Balke
,
C. M.
Brooks
,
D. A.
Tenne
,
D. G.
Schlom
,
L. Q.
Chen
,
X. Q.
Pan
,
S. V.
Kalinin
,
V.
Gopalan
, and
C. B.
Eom
, “
Ferroelectricity in strain-free SrTiO3 thin films
,”
Phys. Rev. Lett.
104
,
197601
(
2010
).
4.
H. L. D.
Lee
,
Y.
Gu
,
S.-Y.
Choi
,
S.-D.
Li
,
S.
Ryu
,
T. R.
Paudel
,
K.
Song
,
E.
Mikheev
,
S.
Lee
,
S.
Stemmer
,
D. A.
Tenne
,
S. H.
Oh
,
E. Y.
Tsymbal
,
X.
Wu
,
L.-Q.
Chen
,
A.
Gruverman
, and
C. B.
Eom
, “
Emergence of room-temperature ferroelectricity at reduced dimensions
,”
Science
349
,
1314
(
2015
).
5.
M. C.
Tarun
,
F. A.
Selim
, and
M. D.
McCluskey
, “
Persistent photoconductivity in strontium titanate
,”
Phys. Rev. Lett.
111
,
187403
(
2013
).
6.
A.
Ohtomo
and
H. Y.
Hwang
, “
A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface
,”
Nature
427
,
423
(
2004
).
7.
D.
Kan
,
T.
Terashima
,
R.
Kanda
,
A.
Masuno
,
K.
Tanaka
,
S.
Chu
,
H.
Kan
,
A.
Ishizumi
,
Y.
Kanemitsu
,
Y.
Shimakawa
, and
M.
Takano
, “
Blue-light emission at room temperature from Ar+-irradiated SrTiO3
,”
Nat. Mater.
4
,
816
(
2005
).
8.
A.
Brinkman
,
M.
Huijben
,
M.
van Zalk
,
J.
Huijben
,
U.
Zeitler
,
J. C.
Maan
,
W. G.
van der Wiel
,
G.
Rijnders
,
D. H. A.
Blank
, and
H.
Hilgenkamp
, “
Magnetic effects at the interface between non-magnetic oxides
,”
Nat. Mater.
6
,
493
(
2007
).
9.
H.
Ohta
,
S.
Kim
,
Y.
Mune
,
T.
Mizoguchi
,
K.
Nomura
,
S.
Ohta
,
T.
Nomura
,
Y.
Nakanishi
,
Y.
Ikuhara
,
M.
Hirano
,
H.
Hosono
, and
K.
Koumoto
, “
Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3
,”
Nat. Mater.
6
,
129
(
2007
).
10.
F.
Azough
,
S. S.
Jackson
,
D.
Ekren
,
R.
Freer
,
M.
Molinari
,
S. R.
Yeandel
,
P. M.
Panchmatia
,
S. C.
Parker
,
D. H.
Maldonado
,
D. M.
Kepaptsoglou
, and
Q. M.
Ramasse
, “
Concurrent La and A-site vacancy doping modulates the thermoelectric response of SrTiO3: Experimental and computational evidence
,”
ACS Appl. Mater. Interfaces
9
,
41988
(
2017
).
11.
D.
Srivastava
,
F.
Azough
,
M.
Molinari
,
S. C.
Parker
, and
R.
Freer
, “
High-temperature thermoelectric properties of (1 − x) SrTiO3 − (x) La1/3NbO3 ceramic solid solution
,”
J. Electron. Mater.
44
,
1803
(
2015
).
12.
Y.
Lee
,
C.
Clement
,
J.
Hellerstedt
,
J.
Kinney
,
L.
Kinnischtzke
,
X.
Leng
,
S. D.
Snyder
, and
A. M.
Goldman
, “
Phase diagram of electrostatically doped SrTiO3
,”
Phys. Rev. Lett.
106
,
136809
(
2011
).
13.
P.
Noël
,
F.
Trier
,
L. M.
Vicente Arche
,
J.
Bréhin
,
D. C.
Vaz
,
V.
Garcia
,
S.
Fusil
,
A.
Barthélémy
,
L.
Vila
,
M.
Bibes
, and
J.-P.
Attané
, “
Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system
,”
Nature
580
,
483
(
2020
).
14.
A. F.
Santander-Syro
,
F.
Fortuna
,
C.
Bareille
,
T. C.
Rödel
,
G.
Landolt
,
N. C.
Plumb
,
J. H.
Dil
, and
M.
Radović
, “
Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3
,”
Nat. Mater.
13
,
1085
(
2014
).
15.
M.
Basini
,
M.
Pancaldi
,
B.
Wehinger
,
M.
Udina
,
V.
Unikandanunni
,
T.
Tadano
,
M. C.
Hoffmann
,
A. V.
Balatsky
, and
S.
Bonetti
, “
Terahertz electric-field-driven dynamical multiferroicity in SrTiO3
,”
Nature
628
,
534
(
2024
).
16.
S.
Zhang
,
J.
Deliyore-Ramírez
,
S.
Deng
,
B.
Nair
,
D.
Pesquera
,
Q.
Jing
,
M. E.
Vickers
,
S.
Crossley
,
M.
Ghidini
,
G. G.
Guzmán-Verri
,
X.
Moya
, and
N. D.
Mathur
, “
Highly reversible extrinsic electrocaloric effects over a wide temperature range in epitaxially strained SrTiO3 films
,”
Nat. Mater.
23
,
639
(
2024
).
17.
D. J.
Keeble
,
S.
Wicklein
,
R.
Dittmann
,
L.
Ravelli
,
R. A.
Mackie
, and
W.
Egger
, “
Identification of A- and B-site cation vacancy defects in perovskite oxide thin films
,”
Phys. Rev. Lett.
105
,
226102
(
2010
).
18.
H.
Kim
,
J. Y.
Zhang
,
S.
Raghavan
, and
S.
Stemmer
, “
Direct observation of Sr vacancies in SrTiO3 by quantitative scanning transmission electron microscopy
,”
Phys. Rev. X
6
,
041063
(
2016
).
19.
A.
Karjalainen
,
V.
Prozheeva
,
I.
Makkonen
,
C.
Guguschev
,
T.
Markurt
,
M.
Bickermann
, and
F.
Tuomisto
, “
TiSr antisite: An abundant point defect in SrTiO3
,”
J. Appl. Phys.
127
,
245702
(
2020
).
20.
M.
Siebenhofer
,
F.
Baiutti
,
J.
de Dios Sirvent
,
T. M.
Huber
,
A.
Viernstein
,
S.
Smetaczek
,
C.
Herzig
,
M. O.
Liedke
,
M.
Butterling
,
A.
Wagner
,
E.
Hirschmann
,
A.
Limbeck
,
A.
Tarancon
,
J.
Fleig
, and
M.
Kubicek
, “
Exploring point defects and trap states in undoped SrTiO3 single crystals
,”
J. Eur. Ceram. Soc.
42
,
1510
(
2022
).
21.
S.
Kobayashi
,
Y.
Mizumukai
,
T.
Ohnishi
,
N.
Shibata
,
Y.
Ikuhara
, and
T.
Yamamoto
, “
High electron mobility of Nb-doped SrTiO3 films stemming from rod-type Sr vacancy clusters
,”
ACS Nano
9
,
10769
(
2015
).
22.
P. C.
Snijders
,
C.
Sen
,
M. P.
McConnell
,
Y. Z.
Ma
,
A. F.
May
,
A.
Herklotz
,
A. T.
Wong
, and
T. Z.
Ward
, “
Dynamic defect correlations dominate activated electronic transport in SrTiO3
,”
Sci. Rep.
6
,
30141
(
2016
).
23.
N.
Osawa
,
R.
Takahashi
, and
M.
Lippmaa
, “
Hole trap state analysis in SrTiO3
,”
Appl. Phys. Lett.
110
,
263902
(
2017
).
24.
Y.
Jin
,
F.
Zhang
,
K.
Zhou
,
C. H.
Suen
,
X. Y.
Zhou
, and
J.-Y.
Dai
, “
Oxygen vacancy and photoelectron enhanced flexoelectricity in perovskite SrTiO3 crystal
,”
Appl. Phys. Lett.
118
,
164101
(
2021
).
25.
A.
Stashans
and
L.
Villamagua
, “
Schottky defects in cubic lattice of SrTiO3
,”
J. Phys. Chem. Solids
70
,
417
(
2009
).
26.
J. N.
Baker
,
P. C.
Bowes
,
J. S.
Harris
, and
D. L.
Irving
, “
Mechanisms governing metal vacancy formation in BaTiO3 and SrTiO3
,”
J. Appl. Phys.
124
,
114101
(
2018
).
27.
A.
Janotti
,
J. B.
Varley
,
M.
Choi
, and
C. G.
Van de Walle
, “
Vacancies and small polarons in SrTiO3
,”
Phys. Rev. B
90
,
085202
(
2014
).
28.
R. A.
Mackie
,
S.
Singh
,
J.
Laverock
,
S. B.
Dugdale
, and
D. J.
Keeble
, “
Vacancy defect positron lifetimes in strontium titanate
,”
Phys. Rev. B
79
,
014102
(
2009
).
29.
X.
Zheng
,
Y.
Yang
,
C.
Fang
, and
X.
Liu
, “
Stability of oxygen vacancies at metal/oxide interfaces
,”
Phys. Chem. Chem. Phys.
25
,
19970
(
2023
).
30.
B.
Liu
,
V. R.
Cooper
,
H.
Xu
,
H.
Xiao
,
Y.
Zhang
, and
W. J.
Weber
, “
Composition dependent intrinsic defect structures in SrTiO3
,”
Phys. Chem. Chem. Phys
16
,
15590
(
2014
).
31.
J. B.
Varley
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Hydrogenated vacancies and hidden hydrogen in SrTiO3
,”
Phys. Rev. B
89
,
075202
(
2014
).
32.
J. E.
Jaffe
,
R. M.
Van Ginhoven
, and
W.
Jiang
, “
Interstitial and substitutional zirconium in SrTiO3
,”
Comput. Mater. Sci.
53
,
153
(
2012
).
33.
L.
Triggiani
,
A. B.
Muñoz-García
,
A.
Agostiano
, and
M.
Pavone
, “
Promoting oxygen vacancy formation and p-type conductivity in SrTiO3 via alkali metal doping: A first principles study
,”
Phys. Chem. Chem. Phys.
18
,
28951
(
2016
).
34.
F.
Ellinger
,
M.
Shafiq
,
I.
Ahmad
,
M.
Reticcioli
, and
C.
Franchini
, “
Small polaron formation on the Nb-doped SrTiO3 (001) surface
,”
Phys. Rev. Mater.
7
,
064602
(
2023
).
35.
J.
Crawford
and
P.
Jacobs
, “
Point defect energies for strontium titanate: A pair-potentials study
,”
J. Solid State Chem.
144
,
423
(
1999
).
36.
F.
El-Mellouhi
,
E. N.
Brothers
,
M. J.
Lucero
, and
G. E.
Scuseria
, “
Neutral defects in SrTiO3 studied with screened hybrid density functional theory
,”
J. Phys.: Condens. Matter
25
,
135501
(
2013
).
37.
C.
Ricca
,
I.
Timrov
,
M.
Cococcioni
,
N.
Marzari
, and
U.
Aschauer
, “
Self-consistent DFT+U+V study of oxygen vacancies in SrTiO3
,”
Phys. Rev. Res.
2
,
023313
(
2020
).
38.
J.
Souto-Casares
,
N. A.
Spaldin
, and
C.
Ederer
, “
Oxygen vacancies in strontium titanate: A DFT+DMFT study
,”
Phys. Rev. Res.
3
,
023027
(
2021
).
39.
S.
Winczewski
,
J.
Dziedzic
,
T.
Miruszewski
,
J.
Rybicki
, and
M.
Gazda
, “
Properties of oxygen vacancy and hydrogen interstitial defects in strontium titanate: DFT + Ud,p calculations
,”
J. Phys. Chem. C
126
,
18439
(
2022
).
40.
J. N.
Baker
,
P. C.
Bowes
,
D. M.
Long
,
A.
Moballegh
,
J. S.
Harris
,
E. C.
Dickey
, and
D. L.
Irving
, “
Defect mechanisms of coloration in Fe-doped SrTiO3 from first principles
,”
Appl. Phys. Lett.
110
,
122903
(
2017
).
41.
P. C.
Bowes
,
J. N.
Baker
,
J. S.
Harris
,
B. D.
Behrhorst
, and
D. L.
Irving
, “
Influence of impurities on the high temperature conductivity of SrTiO3
,”
Appl. Phys. Lett.
112
,
022902
(
2018
).
42.
Z.
Zhang
and
A.
Janotti
, “
Cause of extremely long-lasting room-temperature persistent photoconductivity in SrTiO3 and related materials
,”
Phys. Rev. Lett.
125
,
126404
(
2020
).
43.
M.
Choi
,
F.
Oba
, and
I.
Tanaka
, “
Role of Ti antisite like defects in SrTiO3
,”
Phys. Rev. Lett.
103
,
185502
(
2009
).
44.
O. O.
Brovko
and
E.
Tosatti
, “
Controlling the magnetism of oxygen surface vacancies in SrTiO3 through charging
,”
Phys. Rev. Mater.
1
,
044405
(
2017
).
45.
K.
Klyukin
and
V.
Alexandrov
, “
Effect of intrinsic point defects on ferroelectric polarization behavior of SrTiO3
,”
Phys. Rev. B
95
,
035301
(
2017
).
46.
P.
Reunchan
,
N.
Umezawa
,
A.
Janotti
,
J.
T-Thienprasert
, and
S.
Limpijumnong
, “
Energetics and optical properties of nitrogen impurities in SrTiO3 from hybrid density-functional calculations
,”
Phys. Rev. B
95
,
205204
(
2017
).
47.
T.
Xu
,
T.
Shimada
,
M.
Mori
,
G.
Fujimoto
,
J.
Wang
, and
T.
Kitamura
, “
Defect engineering for nontrivial multiferroic orders in SrTiO3
,”
Phys. Rev. Mater.
4
,
124405
(
2020
).
48.
M. J.
Akhtar
,
Z.-U.-N.
Akhtar
,
R. A.
Jackson
, and
C. R. A.
Catlow
, “
Computer simulation studies of strontium titanate
,”
J. Am. Ceram. Soc.
78
,
421
(
1995
).
49.
T.
Tanaka
,
K.
Matsunaga
,
Y.
Ikuhara
, and
T.
Yamamoto
, “
First-principles study on structures and energetics of intrinsic vacancies in SrTiO3
,”
Phys. Rev. B
68
,
205213
(
2003
).
50.
Y.
Wu
,
P. C.
Bowes
,
J. N.
Baker
, and
D. L.
Irving
, “
Influence of space charge on the conductivity of nanocrystalline SrTiO3
,”
J. Appl. Phys.
128
,
014101
(
2020
).
51.
I.
Mosquera-Lois
,
R. S.
Kavanagh
,
A.
Walsh
, and
O. D.
Scanlon
, “
ShakeNBreak: Navigating the defect configurational landscape
,”
J. Open Source Software
7
,
4817
(
2022
).
52.
D.
Lee
,
H.
Wang
,
B. A.
Noesges
,
T. J.
Asel
,
J.
Pan
,
J.-W.
Lee
,
Q.
Yan
,
L. J.
Brillson
,
X.
Wu
, and
C.-B.
Eom
, “
Identification of a functional point defect in SrTiO3
,”
Phys. Rev. Mater.
2
,
060403
(
2018
).
53.
N. D.
Wood
,
D. M.
Teter
,
J. S.
Tse
,
R. A.
Jackson
,
D. J.
Cooke
,
L. J.
Gillie
,
S. C.
Parker
, and
M.
Molinari
, “
An atomistic modelling investigation of the defect chemistry of SrTiO3 and its Ruddlesden-Popper phases, Srn+1TinO3n+1 (n = 1–3)
,”
J. Solid State Chem.
303
,
122523
(
2021
).
54.
K.
Szot
,
W.
Speier
,
R.
Carius
,
U.
Zastrow
, and
W.
Beyer
, “
Localized metallic conductivity and self-healing during thermal reduction of SrTiO3
,”
Phys. Rev. Lett.
88
,
075508
(
2002
).
55.
C.
Nath
,
C. Y.
Chueh
,
Y. K.
Kuo
, and
J. P.
Singh
, “
Thermoelectric properties of p-type SrTiO3/graphene layers nanohybrids
,”
J. Appl. Phys.
125
,
185101
(
2019
).
56.
V. M.
Poole
,
C. D.
Corolewski
, and
M. D.
McCluskey
, “
P-type conductivity in annealed strontium titanate
,”
AIP Adv.
5
,
127217
(
2015
).
You do not currently have access to this content.