The fabrication of complex nano-scale structures, which is a crucial step in the scaling of (nano)electronic devices, often leads to residual stress in the different layers present. This stress gradient can change many of the material properties, leading to changes in device performance, especially in the active part of the transistor, the channel. Measuring, understanding, and, ultimately, controlling the stress fields is hence crucial for many design steps. The level of stress can in principle be measured by micro-Raman spectroscopy. This, however, requires a priori knowledge of the mechanical properties of the material. However, mechanical properties start to deviate from the bulk values when film dimensions become thinner than 5 nm. If this effect is ignored, errors of up to 400% can be introduced in the extracted stress profile. In this work, we illustrate this effect for a range of Si (001) slabs with different silicon film thicknesses, ranging from 5 to 0.7 nm and provide best practices for the proper interpretation of micro-Raman stress measurements.

1.
H.
Schulz
and
M.
Baranska
,
Vib. Spectrosc.
43
,
13
(
2007
).
2.
3.
V. A.
Shashilov
and
I. K.
Lednev
,
J. Raman Spectrosc.
40
,
1749
(
2009
).
4.
A.
Rygula
,
K.
Majzner
,
K. M.
Marzec
,
A.
Kaczor
,
M.
Pilarczyk
, and
M.
Baranska
,
J. Raman Spectrosc.
44
,
1061
(
2013
).
6.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L. T.
Perelman
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
,
Phys. Rev. Lett.
78
,
1667
(
1997
).
7.
I.
De Wolf
,
Semicond. Sci. Technol.
11
,
139
(
1996
).
8.
I.
De Wolf
,
H.
Maes
, and
S. K.
Jones
,
J. Appl. Phys.
79
,
7148
(
1996
).
9.
R. J.
Angel
,
M.
Murri
,
B.
Mihailova
, and
M.
Alvaro
,
Z. Kristallogr.-Cryst. Mater.
234
,
129
(
2019
).
10.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
(
Elsevier
,
2013
).
11.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
12.
S.
Bertolazzi
,
J.
Brivio
, and
A.
Kis
,
ACS Nano
5
,
9703
(
2011
).
13.
A.
Sarkar
,
Y.
Lee
, and
J.-H.
Ahn
,
Nano Res.
14
,
3010
(
2021
).
14.
B.
Lee
and
R. E.
Rudd
,
Phys. Rev. B
75
,
195328
(
2007
).
15.
I. D.
Wolf
,
J. Appl. Phys.
118
,
053101
(
2015
).
16.
U.
Borštnik
,
J.
VandeVondele
,
V.
Weber
, and
J.
Hutter
,
Parallel Comput.
40
,
47
(
2014
).
17.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
,
WIREs. Comput. Mol. Sci.
4
,
15
(
2014
).
18.
M.
Guidon
,
F.
Schiffmann
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Phys.
128
,
214104
(
2008
).
19.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
5
,
3010
(
2009
).
20.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
6
,
2348
(
2010
).
21.
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
et al,
J. Chem. Phys.
152
,
194103
(
2020
).
22.
X.
Gonze
,
B.
Amadon
,
G.
Antonius
,
F.
Arnardi
,
L.
Baguet
,
J.-M.
Beuken
,
J.
Bieder
,
F.
Bottin
,
J.
Bouchet
,
E.
Bousquet
,
N.
Brouwer
,
F.
Bruneval
,
G.
Brunin
,
T.
Cavignac
,
J.-B.
Charraud
,
W.
Chen
,
M.
Côté
,
S.
Cottenier
,
J.
Denier
,
G.
Geneste
,
P.
Ghosez
,
M.
Giantomassi
,
Y.
Gillet
,
O.
Gingras
,
D. R.
Hamann
,
G.
Hautier
,
X.
He
,
N.
Helbig
,
N.
Holzwarth
,
Y.
Jia
,
F.
Jollet
,
W.
Lafargue-Dit-Hauret
,
K.
Lejaeghere
,
M. A. L.
Marques
,
A.
Martin
,
C.
Martins
,
H. P. C.
Miranda
,
F.
Naccarato
,
K.
Persson
,
G.
Petretto
,
V.
Planes
,
Y.
Pouillon
,
S.
Prokhorenko
,
F.
Ricci
,
G.-M.
Rignanese
,
A. H.
Romero
,
M. M.
Schmitt
,
M.
Torrent
,
M. J.
van Setten
,
B. V.
Troeye
,
M. J.
Verstraete
,
G.
Zérah
, and
J. W.
Zwanziger
,
Comput. Phys. Commun.
248
,
107042
(
2020
).
23.
A. H.
Romero
,
D. C.
Allan
,
B.
Amadon
,
G.
Antonius
,
T.
Applencourt
,
L.
Baguet
,
J.
Bieder
,
F.
Bottin
,
J.
Bouchet
,
E.
Bousquet
,
F.
Bruneval
,
G.
Brunin
,
D.
Caliste
,
M.
Côté
,
J.
Denier
,
C.
Dreyer
,
P.
Ghosez
,
M.
Giantomassi
,
Y.
Gillet
,
O.
Gingras
,
D. R.
Hamann
,
G.
Hautier
,
F.
Jollet
,
G.
Jomard
,
A.
Martin
,
H. P. C.
Miranda
,
F.
Naccarato
,
G.
Petretto
,
N. A.
Pike
,
V.
Planes
,
S.
Prokhorenko
,
T.
Rangel
,
F.
Ricci
,
G.-M.
Rignanese
,
M.
Royo
,
M.
Stengel
,
M.
Torrent
,
M. J.
van Setten
,
B. V.
Troeye
,
M. J.
Verstraete
,
J.
Wiktor
,
J. W.
Zwanziger
, and
X.
Gonze
,
J. Chem. Phys.
152
,
124102
(
2020
).
24.
S.
Wang
,
W.
Wang
,
J.
Zuo
, and
Y.
Qian
,
Mater. Chem. Phys.
68
,
246
(
2001
).
25.
H. C.
Choi
,
Y. M.
Jung
, and
S. B.
Kim
,
Vib. Spectrosc.
37
,
33
(
2005
).
26.
T.
Werninghaus
,
J.
Hahn
,
F.
Richter
, and
D.
Zahn
,
Appl. Phys. Lett.
70
,
958
(
1997
).
27.
C.
Pashartis
,
K.
Sankaran
,
M.
van Setten
,
M.
Houssa
, and
G.
Pourtois
, in
MAM
(
IEEE
,
2022
).
28.
F.
Cerdeira
,
C.
Buchenauer
,
F. H.
Pollak
, and
M.
Cardona
,
Phys. Rev. B
5
,
580
(
1972
).
29.
E.
Anastassakis
,
A.
Cantarero
, and
M.
Cardona
,
Phys. Rev. B
41
,
7529
(
1990
).
30.
31.
Y.
Umeno
,
A.
Kushima
,
T.
Kitamura
,
P.
Gumbsch
, and
J.
Li
,
Phys. Rev. B
72
,
165431
(
2005
).
32.
G.
Petretto
,
S.
Dwaraknath
,
H. P. C.
Miranda
,
D.
Winston
,
M.
Giantomassi
,
M. J.
Van Setten
,
X.
Gonze
,
K. A.
Persson
,
G.
Hautier
, and
G.-M.
Rignanese
,
Sci. Data
5
,
180065
(
2018
).
33.
W. H.
Weber
and
R.
Merlin
,
Raman Scattering in Materials Science
(
Springer Science & Business Media
,
2000
), Vol.
42
.
34.
Y.
Gillet
,
M.
Giantomassi
, and
X.
Gonze
,
Phys. Rev. B
88
,
094305
(
2013
).
35.
C.
Pashartis
,
M.
van Setten
,
M.
Houssa
, and
G.
Pourtois
, in
Materials Summer School Dresden
(
2020
).
You do not currently have access to this content.