Mechanically exfoliated β-Ga2O3 flakes preserve bulk material's single crystallinity for easy integration but suffer from interfacial defects that greatly influence device performance. In this paper, we report a quantitative characterization of interfacial states in phrase β-Ga2O3/SiO2 thin-film transistors and then propose their beneficial application in achieving high-response broad-band photodetection. Photo-excited charge collection spectroscopy technique was employed to probe the interfacial states, revealing a substantial density (∼4 × 1012 cm−2 eV−1) of deep-level states ranging from 2.5 to 3.7 eV below the conduction band. Intriguingly, a photoresponsivity as high as 2 × 104 A/W was achieved via utilizing these interfacial states, along with the tunable broad-band response ranging from 335 to 496 nm. This research enhances both the well-industrialized silicon devices and the emerging β-Ga2O3 technologies. Furthermore, it introduces a profound concept: defects, once seen as flaws, can be assets when their characteristics are thoroughly understood.

1.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
(
1
),
011301
(
2018
).
2.
M. J.
Tadjer
, “
Toward gallium oxide power electronics
,”
Science
378
(
6621
),
724
725
(
2022
).
3.
J.
Zhang
,
P.
Dong
,
K.
Dang
,
Y.
Zhang
,
Q.
Yan
,
H.
Xiang
,
J.
Su
,
Z.
Liu
,
M.
Si
,
J.
Gao
,
M.
Kong
,
H.
Zhou
, and
Y.
Hao
, “
Ultra-wide bandgap semiconductor Ga2O3 power diodes
,”
Nat. Commun.
13
(
1
),
3900
(
2022
).
4.
F.
Zhou
,
H.
Gong
,
M.
Xiao
,
Y.
Ma
,
Z.
Wang
,
X.
Yu
,
L.
Li
,
L.
Fu
,
H. H.
Tan
,
Y.
Yang
,
F.-F.
Ren
,
S.
Gu
,
Y.
Zheng
,
H.
Lu
,
R.
Zhang
,
Y.
Zhang
, and
J.
Ye
, “
An avalanche-and-surge robust ultrawide-bandgap heterojunction for power electronics
,”
Nat. Commun.
14
(
1
),
4459
(
2023
).
5.
X.
Hou
,
Y.
Zou
,
M.
Ding
,
Y.
Qin
,
Z.
Zhang
,
X.
Ma
,
P.
Tan
,
S.
Yu
,
X.
Zhou
,
X.
Zhao
,
G.
Xu
,
H.
Sun
, and
S.
Long
, “
Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications
,”
J. Phys. D
54
(
4
),
043001
(
2021
).
6.
X.-X.
Li
,
G.
Zeng
,
Y.-C.
Li
,
H.
Zhang
,
Z.-G.
Ji
,
Y.-G.
Yang
,
M.
Luo
,
W.-D.
Hu
,
D. W.
Zhang
, and
H.-L.
Lu
, “
High responsivity and flexible deep-UV phototransistor based on Ta-doped β-Ga2O3
,”
npj Flexible Electron.
6
(
1
),
47
(
2022
).
7.
S. K.
Barman
and
M. N.
Huda
, “
Mechanism behind the easy exfoliation of Ga2O3 ultra-thin film along (100) surface
,”
Phys. Status Solidi RRL
13
(
5
),
1800554
(
2019
).
8.
J.
Kim
,
M. A.
Mastro
,
M. J.
Tadjer
, and
J.
Kim
, “
Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor
,”
ACS Appl. Mater. Interfaces
9
(
25
),
21322
21327
(
2017
).
9.
Z.
Li
,
Y.
Liu
,
A.
Zhang
,
Q.
Liu
,
C.
Shen
,
F.
Wu
,
C.
Xu
,
M.
Chen
,
H.
Fu
, and
C.
Zhou
, “
Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies
,”
Nano Res.
12
(
1
),
143
148
(
2019
).
10.
S.
Kim
and
J.
Kim
, “
Electrical properties of thermally annealed β-Ga2O3 metal-semiconductor field-effect transistors with Pt/Au Schottky contacts
,”
ECS J. Solid State Sci. Technol.
8
(
7
),
Q3122
(
2019
).
11.
Y.
Zhang
,
C.-H.
Huang
, and
K.
Nomura
, “
High-mobility wide bandgap amorphous gallium oxide thin-film transistors for NMOS inverters
,”
Appl. Phys. Rev.
11
(
1
),
011418
(
2024
).
12.
J. F.
Mcglone
,
Z.
Xia
,
Y.
Zhang
,
C.
Joishi
,
S.
Lodha
,
S.
Rajan
,
S. A.
Ringel
, and
A. R.
Arehart
, “
Trapping effects in Si-doped-Ga2O3 MESFETs on an Fe-doped-Ga2O3 substrate
,”
IEEE Electron Device Lett.
39
(
7
),
1042
1045
(
2018
).
13.
X.
Xia
,
M.
Xian
,
J.-S.
Li
,
F.
Ren
,
J.
Bae
,
J.
Kim
,
M. A.
Jafar Rasel
,
A.
Haque
, and
S. J.
Pearton
, “
Elevated temperature dependence of dc characteristics of 2-D flake Ga2O3 transistors
,” in
IEEE Southeastcon
(
IEEE
,
Mobile, AL
,
2022
), pp
190
194
. .
14.
S.
Yan
,
Z.
Ding
,
X.
Zhou
,
Z.
Jia
,
W.
Mu
,
Q.
Xin
,
X.
Tao
, and
A.
Song
, “
Anisotropic performances and bending stress effects of the flexible solar-blind photodetectors based on β-Ga2O3 (100) surface
,”
Appl. Surf. Sci.
610
,
155318
(
2023
).
15.
Y.
Zhang
,
H.
Liang
,
F.
Xing
,
Q.
Gao
,
Y.
Feng
,
Y.
Sun
, and
Z.
Mei
, “
Strain-enhanced polarization sensitivity in β-Ga2O3 photodetector
,”
Sci. China Phys. Mech. Astron.
67
(
4
),
247312
(
2024
).
16.
M.
Mehta
,
Y.
Pattipati
,
A. R.
Singh
,
R. S. S.
Ventrapragada
,
S. C.
Vanjari
,
R.
Kant
,
A.
Venugopalarao
,
A.
Mallya
,
S.
Vura
,
S.
Raghavan
, and
S.
Avasthi
, “
Low interface resistance in epitaxial β-Ga2O3 vertical power diodes on silicon (100) using TiN buffer
,”
ACS Appl. Electron. Mater.
6
(
3
),
2084
2092
(
2024
).
17.
C. H.
Choi
,
T.
Kim
,
M. J.
Kim
,
G.-B.
Kim
,
J. E.
Oh
, and
J. K.
Jeong
, “
Double-gate structure enabling remote coulomb scattering-free transport in atomic-layer-deposited IGO thin-film transistors with HfO2 gate dielectric through insertion of SiO2 interlayer
,”
Sci. Rep.
14
(
1
),
7623
(
2024
).
18.
Z.
Wang
,
K.
Han
,
H.
Huang
,
X.
Zhao
,
H.
Zhan
,
X.
Hou
,
X.
Feng
,
X.
Zhou
,
G.
Xu
,
F.
Zhang
, and
S.
Long
, “
Interface‐engineering induced swift and controllable solar‐blind photoresponse in Ga2O3/SiC heterojunction based on unconventional rectification characteristics
,”
Adv. Funct. Mater.
34
,
2400498
(
2024
).
19.
O. M.
Bordun
,
B. O.
Bordun
,
I. Y.
Kukharskyy
, and
I. I.
Medvid
, “
Photoluminescence properties of β-Ga2O3 thin films produced by ion-plasma sputtering
,”
J. Appl. Spectrosc.
84
(
1
),
46
51
(
2017
).
20.
A.
Langørgen
,
L.
Vines
, and
Y.
Kalmann Frodason
, “
Perspective on electrically active defects in β-Ga2O3 from Deep-level transient spectroscopy and first-principles calculations
,”
J. Appl. Phys.
135
(
19
),
195702
(
2024
).
21.
C.
Goldmann
,
C.
Krellner
,
K. P.
Pernstich
,
S.
Haas
,
D. J.
Gundlach
, and
B.
Batlogg
, “
Determination of the interface trap density of rubrene single-crystal field-effect transistors and comparison to the bulk trap density
,”
J. Appl. Phys.
99
(
3
),
034507
(
2006
).
22.
K.
Lee
,
M. S.
Oh
,
S.
Mun
,
K. H.
Lee
,
T. W.
Ha
,
J. H.
Kim
,
S. K.
Park
,
C.
Hwang
,
B. H.
Lee
,
M. M.
Sung
, and
S.
Im
, “
Interfacial Trap density‐of‐states in pentacene‐ and ZnO‐based thin‐film transistors measured via novel photo‐excited charge‐collection spectroscopy
,”
Adv. Mater.
22
(
30
),
3260
3265
(
2010
).
23.
S.
Im
,
Y.-G.
Chang
, and
J.
Kim
, “
PECCS measurements in oxide FETs
,” in
Photo-Excited Charge Collection Spectroscopy: Probing the Traps in Field-Effect Transistors
, edited by
S.
Im
,
Y.-G.
Chang
, and
J. H.
Kim
(
Springer Netherlands
,
Dordrecht
,
2013
), pp
59
81
.
24.
R.
Sun
,
A.
Bhattacharyya
,
M.
Saleh
,
S.
Krishnamoorthy
, and
M. A.
Scarpulla
, “
Influences of orientation and remote O2 plasma exposure on the interface properties of SiO2/β-Ga 2O3 MOS capacitors
,”
IEEE Trans. Electron Devices
70
(
3
),
1188
1193
(
2023
).
25.
K.
Zeng
,
Y.
Jia
, and
U.
Singisetti
, “
Interface state density in atomic layer deposited SiO2/β-Ga2O3 (-201) MOSCAPs
,”
IEEE Electron Device Lett.
37
(
7
),
906
909
(
2016
).
26.
N.
Zhu
,
K.
Ma
,
X.
Xue
, and
J.
Su
, “
The formation and role of the SiO2 oxidation layer in the 4H-SiC/β-Ga2O3 Interface
,”
Appl. Surf. Sci.
581
,
151956
(
2022
).
27.
J.
Verma
,
S.
Pant
,
S.
Kumari
,
V.
Belwanshi
,
J.
Dalal
, and
A.
Kumar
, “
Trench termination in Ga2O3-based power device: A simulation-based study
,”
Appl. Nanosci.
13
(
5
),
3255
3261
(
2023
).
28.
D.
Biswas
,
C.
Joishi
,
J.
Biswas
,
K.
Thakar
,
S.
Rajan
, and
S.
Lodha
, “
Enhanced n-type β-Ga2O3 (2¯01) gate stack performance using Al2O3/SiO2 bi-layer dielectric
,”
Appl. Phys. Lett.
114
(
21
),
212106
(
2019
).
29.
A.
Jayawardena
,
R. P.
Ramamurthy
,
A. C.
Ahyi
,
D.
Morisette
, and
S.
Dhar
, “
Interface trapping in (2¯01) β-Ga2O3 MOS capacitors with deposited dielectrics
,”
Appl. Phys. Lett.
112
(
19
),
192108
(
2018
).
30.
K.
Zeng
and
U.
Singisetti
, “
Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations
,”
Appl. Phys. Lett.
111
(
12
),
122108
(
2017
).
31.
Y.
Zhang
and
F.
Xing
, “
Anisotropic optical and electric properties of β-gallium oxide
,”
J. Semicond.
44
(
7
),
071801
071815
(
2023
).
32.
Z.
Han
,
H.
Liang
,
W.
Huo
,
X.
Zhu
,
X.
Du
, and
Z.
Mei
, “
Boosted UV photodetection performance in chemically etched amorphous Ga2O3 thin‐film transistors
,”
Adv. Opt. Mater.
8
,
1901833
(
2020
).
33.
Y.-H.
Zhang
,
Z.-X.
Mei
,
H.-L.
Liang
, and
X.-L.
Du
, “
Review of flexible and transparent thin-film transistors based on zinc oxide and related materials
,”
Chin. Phys. B
26
(
4
),
047307
(
2017
).
34.
R. L.
Hoffman
, “
ZnO-channel thin-film transistors: Channel mobility
,”
J. Appl. Phys.
95
(
10
),
5813
5819
(
2004
).
35.
D.
Hong
,
G.
Yerubandi
,
H. Q.
Chiang
,
M. C.
Spiegelberg
, and
J. F.
Wager
, “
Electrical modeling of thin-film transistors
,”
Crit. Rev. Solid State Mater. Sci.
33
(
2
),
101
132
(
2008
).
36.
G. S.
Paul
and
P.
Agarwal
, “
Persistent photocurrent and decay studies in CdS nanorods thin films
,”
J. Appl. Phys.
106
(
10
),
103705
(
2009
).
37.
S.
Cui
,
Z.
Mei
,
Y.
Zhang
,
H.
Liang
, and
X.
Du
, “
Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates
,”
Adv. Opt. Mater.
5
(
19
),
1700454
(
2017
).
38.
Y.
Pei
,
R.
Pei
,
X.
Liang
,
Y.
Wang
,
L.
Liu
,
H.
Chen
, and
J.
Liang
, “
CdS-nanowires flexible photo-detector with Ag-nanowires electrode based on non-transfer process
,”
Sci. Rep.
6
(
1
),
21551
(
2016
).
39.
H.
Zhou
,
L.
Cong
,
J.
Ma
,
B.
Li
,
M.
Chen
,
H.
Xu
, and
Y.
Liu
, “
High gain broadband photoconductor based on amorphous Ga2O3 and suppression of persistent photoconductivity
,”
J. Mater. Chem. C
7
(
42
),
13149
13155
(
2019
).
40.
S.
Lany
and
A.
Zunger
, “
Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors
,”
Phys. Rev. B
72
(
3
),
035215
(
2005
).
41.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
S. J.
Pearton
,
F.
Ren
,
A. V.
Chernykh
,
P. B.
Lagov
, and
T. V.
Kulevoy
, “
Hole traps and persistent photocapacitance in proton irradiated β-Ga2O3 films doped with Si
,”
APL Mater.
6
(
9
),
096102
(
2018
).
42.
S.
Im
,
Y.-G.
Chang
, and
J.
Kim
, “
PECCS measurements in nanostructure FETs
,” in
Photo-Excited Charge Collection Spectroscopy: Probing the Traps Field-Effect Transistors
, Springer Briefs in Physics, edited by
S.
Im
,
Y.-G.
Chang
, and
J. H.
Kim
(
Springer Netherlands
,
Dordrecht
,
2013
),; pp
83
97
.
43.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
E. B.
Yakimov
,
J.
Yang
,
F.
Ren
,
G.
Yang
,
J.
Kim
,
A.
Kuramata
, and
S. J.
Pearton
, “
Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage
,”
Appl. Phys. Lett.
112
(
3
),
032107
(
2018
).
44.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
E. B.
Yakimov
,
S. J.
Pearton
,
C.
Fares
,
J.
Yang
,
F.
Ren
,
J.
Kim
,
P. B.
Lagov
,
V. S.
Stolbunov
, and
A.
Kochkova
, “
Defects responsible for charge carrier removal and correlation with deep level introduction in irradiated β-Ga2O3
,”
Appl. Phys. Lett.
113
(
9
),
092102
(
2018
).
45.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Oxygen vacancies and donor impurities in β-Ga2O3
,”
Appl. Phys. Lett.
97
(
14
),
142106
(
2010
).
46.
T.
Zacherle
,
P. C.
Schmidt
, and
M.
Martin
, “
Ab Initio calculations on the defect structure of β-Ga2O3
,”
Phys. Rev. B
87
(
23
),
235206
(
2013
).
47.
T.
Harwig
and
F.
Kellendonk
, “
Some observations on the photoluminescence of doped β-galliumsesquioxide
,”
J. Solid State Chem.
24
(
3
),
255
263
(
1978
).
48.
L.
Binet
and
D.
Gourier
, “
Origin of the blue luminescence of β-Ga2O3
,”
J. Phys. Chem. Solids
59
(
8
),
1241
1249
(
1998
).
49.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
D.
Gogova
,
S. A.
Tarelkin
, and
S. J.
Pearton
, “
Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3
,”
J. Appl. Phys.
123
(
11
),
115702
(
2018
).
50.
M. E.
Ingebrigtsen
,
J. B.
Varley
,
A. Y.
Kuznetsov
,
B. G.
Svensson
,
G.
Alfieri
,
A.
Mihaila
,
U.
Badstübner
, and
L.
Vines
, “
Iron and intrinsic deep level states in Ga2O3
,”
Appl. Phys. Lett.
112
(
4
),
042104
(
2018
).
51.
M. E.
Ingebrigtsen
,
A. Y.
Kuznetsov
,
B. G.
Svensson
,
G.
Alfieri
,
A.
Mihaila
,
U.
Badstübner
,
A.
Perron
,
L.
Vines
, and
J. B.
Varley
, “
Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3
,”
APL Mater.
7
(
2
),
022510
(
2019
).
You do not currently have access to this content.