We experimentally demonstrate digital communications in the terahertz (THz) band using a rubidium vapor cell as a quantum receiver. We utilize amplitude modulation to encode digital information in THz photons, which are coherently upconverted to optical photons via a Rydberg six-wave-mixing process. We achieve a data transmission rate of up to 1.16 Mbit/s and a tunable bandwidth of up to 142 MHz near a 0.11 THz carrier. With reduced data rate and increased integration time per bit, we demonstrate weak-field THz transmission with a receiver sensitivity in the −130 dBm range. As a proof of principle, we perform an end-to-end transmission of digital color images in the THz band. Our work provides the possibility of THz communication at the single-photon level.

1.
S.
Cherry
, “
Edholm's law of bandwidth
,”
IEEE Spectr.
41
(
7
),
58
60
(
2004
).
2.
H. J.
Song
and
T.
Nagatsuma
, “
Present and future of terahertz communications
,”
IEEE Trans. Terahertz Sci. Technol.
1
(
1
),
256
263
(
2011
).
3.
C.
Sirtori
, “
Bridge for the terahertz gap
,”
Nature
417
(
6885
),
132
133
(
2002
).
4.
R.
Kleiner
, “
Filling the terahertz gap
,”
Science
318
(
5854
),
1254
1255
(
2007
).
5.
H.
Fan
,
S.
Kumar
,
J.
Sedlacek
,
H.
Kübler
,
S.
Karimkashi
, and
J. P.
Shaffer
, “
Atom based RF electric field sensing
,”
J. Phys. B: At., Mol. Opt. Phys.
48
(
20
),
202001
(
2015
).
6.
H.
Zhang
,
Y.
Ma
,
K.
Liao
,
W.
Yang
,
Z.
Liu
,
D.
Ding
,
H.
Yan
,
W.
Li
, and
L.
Zhang
, “
Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems
,”
Sci. Bull.
69
(
10
),
1515
1535
(
2024
).
7.
Y. Y.
Jau
and
T.
Carter
, “
Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz
,”
Phys. Rev. Appl.
13
(
5
),
054034
(
2020
).
8.
S. A.
Miller
,
D. A.
Anderson
, and
G.
Raithel
, “
Radio-frequency-modulated Rydberg states in a vapor cell
,”
New J. Phys.
18
(
5
),
053017
(
2016
).
9.
C. G.
Wade
,
N.
Sibalic
,
N. R.
de Melo
,
J. M.
Kondo
,
C. S.
Adams
, and
K. J.
Weatherill
, “
Real-time near-field terahertz imaging with atomic optical fluorescence
,”
Nat. Photonics
11
(
1
),
40
43
(
2017
).
10.
J. A.
Sedlacek
,
A.
Schwettmann
,
H.
Kübler
,
R.
Löw
,
T.
Pfau
, and
J. P.
Shaffer
, “
Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances
,”
Nat. Phys.
8
(
11
),
819
824
(
2012
).
11.
D. H.
Meyer
,
Z. A.
Castillo
,
K. C.
Cox
, and
P. D.
Kunz
, “
Assessment of Rydberg atoms for wideband electric field sensing
,”
J. Phys. B: At., Mol. Opt. Phys.
53
(
3
),
034001
(
2020
).
12.
G.
Allinson
,
M. J.
Jamieson
,
A. R.
Mackellar
,
L.
Downes
,
C. S.
Adams
, and
K. J.
Weatherill
, “
Simultaneous multiband radio-frequency detection using high-orbital-angular-momentum states in a Rydberg-atom receiver
,”
Phys. Rev. Res.
6
(
2
),
023317
(
2024
).
13.
S.
Haroche
, “
Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary
,”
Rev. Mod. Phys.
85
(
3
),
1083
1102
(
2013
).
14.
S.
Kumar
,
H.
Fan
,
H.
Kübler
,
J.
Sheng
, and
J. P.
Shaffer
, “
Atom-based sensing of weak radio frequency electric fields using homodyne readout
,”
Sci. Rep.
7
(
1
),
42981
(
2017
).
15.
S.
Kumar
,
H.
Fan
,
H.
Kübler
,
A. J.
Jahangiri
, and
J. P.
Shaffer
, “
Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room-temperature vapor cells
,”
Opt. Express
25
(
8
),
8625
8637
(
2017
).
16.
H.
Fan
,
S.
Kumar
,
J.
Sheng
, and
J. P.
Shaffer
, “
Effect of vapor-cell geometry on Rydberg-atom-based measurements of radio-frequency electric fields
,”
Phys. Rev. Appl.
4
(
4
),
044015
(
2015
).
17.
J. A.
Sedlacek
,
A.
Schwettmann
,
H.
Kübler
, and
J. P.
Shaffer
, “
Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell
,”
Phys. Rev. Lett.
111
(
6
),
063001
(
2013
).
18.
M.
Jing
,
Y.
Hu
,
J.
Ma
,
H.
Zhang
,
L.
Zhang
,
L.
Xiao
, and
S.
Jia
, “
Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy
,”
Nat. Phys.
16
(
9
),
911
915
(
2020
).
19.
M. T.
Simons
,
A. H.
Haddab
,
J. A.
Gordon
, and
C. L.
Holloway
, “
A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave
,”
Appl. Phys. Lett.
114
(
11
),
114101
(
2019
).
20.
H. Q.
Fan
,
S.
Kumar
,
R.
Daschner
,
H.
Kübler
, and
J. P.
Shaffer
, “
Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells
,”
Opt. Lett.
39
(
10
),
3030
3033
(
2014
).
21.
C. L.
Holloway
,
J. A.
Gordon
,
A.
Schwarzkopf
,
D. A.
Anderson
,
S. A.
Miller
,
N.
Thaicharoen
, and
G.
Raithel
, “
Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms
,”
Appl. Phys. Lett.
104
(
24
),
244102
(
2014
).
22.
F.
Ripka
,
H.
Kübler
,
R.
Löw
, and
T.
Pfau
, “
A room-temperature single-photon source based on strongly interacting Rydberg atoms
,”
Science
362
(
6413
),
446
449
(
2018
).
23.
S.
Shi
,
B.
Xu
,
K.
Zhang
,
G. S.
Ye
,
D. S.
Xiang
,
Y.
Liu
,
J.
Wang
,
D.
Su
, and
L.
Li
, “
High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source
,”
Nat. Commun.
13
(
1
),
4454
(
2022
).
24.
H. T.
Tu
,
K. Y.
Liao
,
Z. X.
Zhang
,
X. H.
Liu
,
S. Y.
Zheng
,
S. Z.
Yang
,
X. D.
Zhang
,
H.
Yan
, and
S. L.
Zhu
, “
High-efficiency coherent microwave-to-optics conversion via off-resonant scattering
,”
Nat. Photonics
16
(
4
),
291
296
(
2022
).
25.
T.
Vogt
,
C.
Gross
,
J.
Han
,
S. B.
Pal
,
M.
Lam
,
M.
Kiffner
, and
W.
Li
, “
Efficient microwave-to-optical conversion using Rydberg atoms
,”
Phys. Rev. A
99
(
2
),
023832
(
2019
).
26.
A.
Kumar
,
A.
Suleymanzade
,
M.
Stone
,
L.
Taneja
,
A.
Anferov
,
D. I.
Schuster
, and
J.
Simon
, “
Quantum-enabled millimetre wave to optical transduction using neutral atoms
,”
Nature
615
(
7953
),
614
619
(
2023
).
27.
H. J.
Kimble
, “
The quantum internet
,”
Nature
453
(
7198
),
1023
1030
(
2008
).
28.
S.
Wehner
,
D.
Elkouss
, and
R.
Hanson
, “
Quantum internet: A vision for the road ahead
,”
Science
362
(
6412
),
eaam9288
(
2018
).
29.
S.
Borówka
,
U.
Pylypenko
,
M.
Mazelanik
, and
M.
Parniak
, “
Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms
,”
Nat. Photonics
18
(
1
),
32
38
(
2024
).
30.
D.
Li
,
Z.
Bai
,
X.
Zuo
,
Y.
Wu
,
J.
Sheng
, and
H.
Wu
, “
Room temperature single-photon terahertz detection with thermal Rydberg atoms
,”
Appl. Phys. Rev.
11
,
041420
(
2024
).
31.
K. C.
Cox
,
D. H.
Meyer
,
F. K.
Fatemi
, and
P. D.
Kunz
, “
Quantum-limited atomic receiver in the electrically small regime
,”
Phys. Rev. Lett.
121
(
11
),
110502
(
2018
).
32.
Y.
Du
,
N.
Cong
,
X.
Wei
,
X.
Zhang
,
W.
Luo
,
J.
He
, and
R.
Yang
, “
Realization of multiband communications using different Rydberg final states
,”
AIP Adv.
12
(
6
),
065118
(
2022
).
33.
H.
Li
,
J.
Hu
,
J.
Bai
,
M.
Shi
,
Y.
Jiao
,
J.
Zhao
, and
S.
Jia
, “
Rydberg atom-based AM receiver with a weak continuous frequency carrier
,”
Opt. Express
30
(
8
),
13522
13529
(
2022
).
34.
S.
Berweger
,
N.
Prajapati
,
A. B.
Artusio-Glimpse
,
A. P.
Rotunno
,
R.
Brown
,
C. L.
Holloway
,
M. T.
Simons
,
E.
Imhof
,
S. R.
Jefferts
,
B. N.
Kayim
,
M. A.
Viray
,
R.
Wyllie
,
B. C.
Sawyer
, and
T. G.
Walker
, “
Rydberg-state engineering: Investigations of tuning schemes for continuous frequency sensing
,”
Phys. Rev. Appl.
19
(
4
),
044049
(
2023
).
35.
Y.
Jiao
,
X.
Han
,
J.
Fan
,
G.
Raithel
,
J.
Zhao
, and
S.
Jia
, “
Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication
,”
Appl. Phys. Express
12
(
12
),
126002
(
2019
).
36.
D. H.
Meyer
,
K. C.
Cox
,
F. K.
Fatemi
, and
P. D.
Kunz
, “
Digital communication with Rydberg atoms and amplitude-modulated microwave fields
,”
Appl. Phys. Lett.
112
(
21
),
211108
(
2018
).
37.
D. A.
Anderson
,
R. E.
Sapiro
, and
G.
Raithel
, “
An atomic receiver for AM and FM radio communication
,”
IEEE Trans. Antennas Propag.
69
(
5
),
2455
2462
(
2021
).
38.
C. L.
Holloway
,
M. T.
Simons
,
J. A.
Gordon
, and
D.
Novotny
, “
Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver
,”
IEEE Antennas Wireless Propag.
18
(
9
),
1853
1857
(
2019
).
39.
Y.
Cai
,
S.
Shi
,
Y.
Zhou
,
Y.
Li
,
J.
Yu
,
W.
Li
, and
L.
Li
, “
High-sensitivity Rydberg-atom-based phase-modulation receiver for frequency-division-multiplexing communication
,”
Phys. Rev. Appl.
19
(
4
),
044079
(
2023
).
40.
M.
Menchetti
,
L. W.
Bussey
,
D.
Gilks
,
T.
Whitley
,
C.
Constantinou
, and
K.
Bongs
, “
Digitally encoded RF to optical data transfer using excited Rb without the use of a local oscillator
,”
J. Appl. Phys.
133
(
1
),
014401
(
2023
).
41.
H.
Zou
,
Z.
Song
,
H.
Mu
,
Z.
Feng
,
J.
Qu
, and
Q.
Wang
, “
Atomic receiver by utilizing multiple radio-frequency coupling at Rydberg states of rubidium
,”
Appl. Sci.
10
(
4
),
1346
(
2020
).
42.
Y. Y.
Lin
,
Z. Y.
She
,
Z. W.
Chen
,
X. Z.
Li
,
C. X.
Zhang
,
K. Y.
Liao
,
X. D.
Zhang
,
J. H.
Chen
,
W.
Huang
,
H.
Yan
, and
S. L.
Zhu
, “
Terahertz receiver based on room-temperature Rydberg-atoms
,” arXiv:2205.11021 (
2023
).
43.
D. H.
Meyer
,
J. C.
Hill
,
P. D.
Kunz
, and
K. C.
Cox
, “
Simultaneous multiband demodulation using a Rydberg atomic sensor
,”
Phys. Rev. Appl.
19
(
1
),
014025
(
2023
).
44.
J.
Han
,
T.
Vogt
,
C.
Gross
,
D.
Jaksch
,
M.
Kiffner
, and
W.
Li
, “
Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms
,”
Phys. Rev. Lett.
120
(
9
),
093201
(
2018
).
45.
N. J.
Lambert
,
A.
Rueda
,
F.
Sedlmeir
, and
H. G. L.
Schwefel
, “
Coherent conversion between microwave and optical photons—An overview of physical implementations
,”
Adv. Quantum Technol.
3
(
1
),
1900077
(
2020
).
46.
N. R.
Laddha
and
A. P.
Thakare
, “
A review on serial communication by UART
,”
Int. J. Adv. Res. Comput. Sci. Softw. Eng.
3
(
1
),
366
369
(
2013
).
47.
J. M.
Vanderau
,
Delivered Audio Quality Measurements on Project 25 Land Mobile Radios
(
Institute for Telecommunication Sciences
,
1998
).
You do not currently have access to this content.