We theoretically investigate the light-induced transition of the kagome quasienergy spectrum into a Lieb-like spectrum under periodic driving fields. We develop a general framework for calculating renormalized hopping potentials, which is applicable to any two-dimensional lattice with arbitrary field polarizations. By implementing this framework on a kagome lattice driven by a linearly polarized light in the off-resonant regime, we demonstrate that the hopping strength along specific bonds can be tuned to zero. This control leads to the merging of two inequivalent Dirac points in the Brillouin zone, governed by the field parameters. This merging leads to the transition from the kagome quasienergy spectrum to a Lieb-like spectrum with a smaller bandwidth at a specific value of field parameter. In addition, the longitudinal optical conductivity of the driven kagome lattice can be measured to investigate the kagome to Lieb transition and merging of Dirac points, as suggested by our calculation.

1.
X.
Wan
,
S.
Sarkar
,
S.-Z.
Lin
, and
K.
Sun
, “
Topological exact flat bands in two-dimensional materials under periodic strain
,”
Phys. Rev. Lett.
130
,
216401
(
2023
).
2.
T.
Aida
,
K.
Matsumoto
,
D.
Ogura
,
M.
Ochi
, and
K.
Kuroki
, “
Theoretical study of spin-fluctuation-mediated superconductivity in two-dimensional hubbard models with an incipient flat band
,”
Phys. Rev. B
110
,
054516
(
2024
).
3.
Z.
Li
,
J.
Zhuang
,
L.
Wang
,
H.
Feng
,
Q.
Gao
,
X.
Xu
,
W.
Hao
,
X.
Wang
,
C.
Zhang
,
K.
Wu
et al, “
Realization of flat band with possible nontrivial topology in electronic kagome lattice
,”
Sci. Adv.
4
,
eaau4511
(
2018
).
4.
S.
Tao
,
X.
Zhang
,
J.
Zhu
,
P.
He
,
S. A.
Yang
,
Y.
Lu
, and
S.-H.
Wei
, “
Designing ultra-flat bands in twisted bilayer materials at large twist angles: Theory and application to two-dimensional indium selenide
,”
J. Am. Chem. Soc.
144
,
3949
3956
(
2022
).
5.
D.
Leykam
,
A.
Andreanov
, and
S.
Flach
, “
Artificial flat band systems: From lattice models to experiments
,”
Adv. Phys.: X
3
,
1473052
(
2018
).
6.
R. A.
Vicencio Poblete
, “
Photonic flat band dynamics
,”
Adv. Phys.: X
6
,
1878057
(
2021
).
7.
V.
Peri
,
Z.-D.
Song
,
B. A.
Bernevig
, and
S. D.
Huber
, “
Fragile topology and flat-band superconductivity in the strong-coupling regime
,”
Phys. Rev. Lett.
126
,
027002
(
2021
).
8.
L.
Balents
,
C. R.
Dean
,
D. K.
Efetov
, and
A. F.
Young
, “
Superconductivity and strong correlations in moiré flat bands
,”
Nat. Phys.
16
,
725
733
(
2020
).
9.
S.
Samanta
,
H.
Park
,
C.
Lee
,
S.
Jeon
,
H.
Cui
,
Y.-X.
Yao
,
J.
Hwang
,
K.-Y.
Choi
, and
H.-S.
Kim
, “
Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal
,”
Nat. Commun.
15
,
5376
(
2024
).
10.
G.
Bouzerar
, “
Flat band induced room-temperature ferromagnetism in two-dimensional systems
,”
Phys. Rev. B
107
,
184441
(
2023
).
11.
Z.
Han
,
J.
Herzog-Arbeitman
,
B. A.
Bernevig
, and
S. A.
Kivelson
, ““
Quantum geometric nesting” and solvable model flat-band systems
,”
Phys. Rev. X
14
,
041004
(
2024
).
12.
M.
Niţă
,
B.
Ostahie
, and
A.
Aldea
, “
Spectral and transport properties of the two-dimensional Lieb lattice
,”
Phys. Rev. B
87
,
125428
(
2013
).
13.
H.-M.
Guo
and
M.
Franz
, “
Topological insulator on the kagome lattice
,”
Phys. Rev. B
80
,
113102
(
2009
).
14.
F.
Wang
and
Y.
Ran
, “
Nearly flat band with Chern number C = 2 on the dice lattice
,”
Phys. Rev. B
84
,
241103
(
2011
).
15.
H.
Tamura
,
K.
Shiraishi
,
T.
Kimura
, and
H.
Takayanagi
, “
Flat-band ferromagnetism in quantum dot superlattices
,”
Phys. Rev. B
65
,
085324
(
2002
).
16.
D.
Yoon
,
Y.-W.
Son
, and
H.
Cheong
, “
Strain-dependent splitting of the double-resonance Raman scattering band in graphene
,”
Phys. Rev. Lett.
106
,
155502
(
2011
).
17.
H. J.
Conley
,
B.
Wang
,
J. I.
Ziegler
,
R. F.
Haglund
, Jr.
,
S. T.
Pantelides
, and
K. I.
Bolotin
, “
Bandgap engineering of strained monolayer and bilayer MoS2
,”
Nano Lett.
13
,
3626
3630
(
2013
).
18.
K.
He
,
C.
Poole
,
K. F.
Mak
, and
J.
Shan
, “
Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2
,”
Nano Lett.
13
,
2931
2936
(
2013
).
19.
H.
Shi
,
H.
Pan
,
Y.-W.
Zhang
, and
B. I.
Yakobson
, “
Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2
,”
Phys. Rev. B
87
,
155304
(
2013
).
20.
M.
Oliva-Leyva
and
G. G.
Naumis
, “
Anisotropic ac conductivity of strained graphene
,”
J. Phys. Condens. Matter
26
,
125302
(
2014
).
21.
V. M.
Pereira
,
A.
Castro Neto
, and
N.
Peres
, “
Tight-binding approach to uniaxial strain in graphene
,”
Phys. Rev. B
80
,
045401
(
2009
).
22.
N.
Swain
and
M.
Karmakar
, “
Strain-induced superconductor-insulator transition on a lieb lattice
,”
Phys. Rev. Res.
2
,
023136
(
2020
).
23.
L.
Xu
and
F.
Yang
, “
Band structures of strained kagome lattices
,”
Chin. Phys. B
33
,
027101
(
2024
).
24.
W.
Jiang
,
M.
Kang
,
H.
Huang
,
H.
Xu
,
T.
Low
, and
F.
Liu
, “
Topological band evolution between Lieb and kagome lattices
,”
Phys. Rev. B
99
,
125131
(
2019
).
25.
L.-K.
Lim
,
J.-N.
Fuchs
,
F.
Piéchon
, and
G.
Montambaux
, “
Dirac points emerging from flat bands in Lieb-kagome lattices
,”
Phys. Rev. B
101
,
045131
(
2020
).
26.
W.
Lima
,
D.
da Costa
,
S.
Sena
, and
J. M.
Pereira
, Jr.
, “
Effects of uniaxial and shear strains on the electronic spectrum of Lieb and kagome lattices
,”
Phys. Rev. B
108
,
125433
(
2023
).
27.
E.
Blundo
,
E.
Cappelluti
,
M.
Felici
,
G.
Pettinari
, and
A.
Polimeni
, “
Strain-tuning of the electronic, optical, and vibrational properties of two-dimensional crystals
,”
Appl. Phys. Rev.
8
,
021318
(
2021
).
28.
P.
Delplace
,
Á.
Gómez-León
, and
G.
Platero
, “
Merging of Dirac points and Floquet topological transitions in ac-driven graphene
,”
Phys. Rev. B
88
,
245422
(
2013
).
29.
C.
He
and
Z.
Zhang
, “
Floquet topological phase transitions and chiral edge states in a kagome lattice
,”
Phys. Lett. A
378
,
3200
3204
(
2014
).
30.
L.
Du
,
X.
Zhou
, and
G. A.
Fiete
, “
Quadratic band touching points and flat bands in two-dimensional topological Floquet systems
,”
Phys. Rev. B
95
,
035136
(
2017
).
31.
M.
Wackerl
,
P.
Wenk
, and
J.
Schliemann
, “
Floquet-drude conductivity
,”
Phys. Rev. B
101
,
184204
(
2020
).
32.
G.
Kumar
,
S.
Kumar
,
A.
Kumar
, and
P.
Parida
, “
Predicting edge-localized monovacancy defects in zigzag graphene nanoribbons from Floquet quasienergy spectrum
,”
Phys. Rev. B
109
,
235401
(
2024a
).
33.
A.
López
,
B.
Berche
,
J.
Schliemann
,
F.
Mireles
, and
B.
Santos
, “
Photoinduced polarization enhancement on biased bilayer graphene in the Landau level regime
,”
J. Phys. Condens. Matter
31
,
495703
(
2019
).
34.
A.
López
,
A.
Scholz
,
B.
Santos
, and
J.
Schliemann
, “
Photoinduced pseudospin effects in silicene beyond the off-resonant condition
,”
Phys. Rev. B
91
,
125105
(
2015
).
35.
S.
Zhou
,
C.
Bao
,
B.
Fan
,
H.
Zhou
,
Q.
Gao
,
H.
Zhong
,
T.
Lin
,
H.
Liu
,
P.
Yu
,
P.
Tang
et al, “
Pseudospin-selective Floquet band engineering in black phosphorus
,”
Nature
614
,
75
80
(
2023
).
36.
S.
Aeschlimann
,
S. A.
Sato
,
R.
Krause
,
M.
Chavez-Cervantes
,
U.
De Giovannini
,
H.
Hubener
,
S.
Forti
,
C.
Coletti
,
K.
Hanff
,
K.
Rossnagel
et al, “
Survival of Floquet-Bloch states in the presence of scattering
,”
Nano Lett.
21
,
5028
5035
(
2021
).
37.
D.
Choi
,
M.
Mogi
,
U.
De Giovannini
,
D.
Azoury
,
B.
Lv
,
Y.
Su
,
H.
Hübener
,
A.
Rubio
, and
N.
Gedik
,
Direct observation of Floquet-Bloch states in monolayer graphene
,” arXiv:2404.14392 (
2024
).
38.
L.
Broers
and
L.
Mathey
, “
Detecting light-induced Floquet band gaps of graphene via trARPES
,”
Phys. Rev. Res.
4
,
013057
(
2022
).
39.
Y.
Wang
,
H.
Steinberg
,
P.
Jarillo-Herrero
, and
N.
Gedik
, “
Observation of Floquet-Bloch states on the surface of a topological insulator
,”
Science
342
,
453
457
(
2013
).
40.
M.
Merboldt
,
M.
Schüler
,
D.
Schmitt
,
J. P.
Bange
,
W.
Bennecke
,
K.
Gadge
,
K.
Pierz
,
H. W.
Schumacher
,
D.
Momeni
,
D.
Steil
et al, “
Observation of floquet states in graphene
,” arXiv:2404.12791 (
2024
).
41.
M.
Sentef
,
M.
Claassen
,
A.
Kemper
,
B.
Moritz
,
T.
Oka
,
J.
Freericks
, and
T.
Devereaux
, “
Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene
,”
Nat. Commun.
6
,
7047
(
2015
).
42.
Y.
Zhou
and
M.-W.
Wu
, “
Optical response of graphene under intense terahertz fields
,”
Phys. Rev. B
83
,
245436
(
2011
).
43.
A.
Scholz
,
A.
López
, and
J.
ann
, “
Interplay between spin-orbit interactions and a time-dependent electromagnetic field in monolayer graphene
,”
Phys. Rev. B
88
,
045118
(
2013
).
44.
S. S.
Dabiri
,
H.
Cheraghchi
,
F.
Adinehvand
, and
R.
Asgari
, “
Modulating dichroism and optical conductivity in bilayer graphene under intense electromagnetic field irradiation
,”
Phys. Rev. B
109
,
115431
(
2024
).
45.
S. S.
Dabiri
,
H.
Cheraghchi
, and
A.
Sadeghi
, “
Floquet states and optical conductivity of an irradiated two-dimensional topological insulator
,”
Phys. Rev. B
106
,
165423
(
2022
).
46.
T.
Oka
and
H.
Aoki
, “
Photovoltaic Hall effect in graphene
,”
Phys. Rev. B
79
,
081406
(
2009
).
47.
W.
Wang
,
X.
Lüu
, and
H.
Xie
, “
Floquet bands and photon-induced topological edge states of graphene nanoribbons
,”
Chin. Phys. B
30
,
066701
(
2021
).
48.
G. W.
Harmon
,
J. T.
Reilly
,
M. J.
Holland
, and
S. B.
Jäger
, “
Mean-field Floquet theory for a three-level cold-atom laser
,”
Phys. Rev. A
106
,
013706
(
2022
).
49.
T.
Kitagawa
,
T.
Oka
,
A.
Brataas
,
L.
Fu
, and
E.
Demler
, “
Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum hall insulators without landau levels
,”
Phys. Rev. B
84
,
235108
(
2011
).
50.
M.
Tahir
,
Q.
Zhang
, and
U.
Schwingenschlögl
, “
Floquet edge states in germanene nanoribbons
,”
Sci. Rep.
6
,
31821
(
2016
).
51.
S.
Tani
,
F.
Blanchard
, and
K.
Tanaka
, “
Ultrafast carrier dynamics in graphene under a high electric field
,”
Phys. Rev. Lett.
109
,
166603
(
2012
).
52.
J.
Karch
,
C.
Drexler
,
P.
Olbrich
,
M.
Fehrenbacher
,
M.
Hirmer
,
M.
Glazov
,
S.
Tarasenko
,
E.
Ivchenko
,
B.
Birkner
,
J.
Eroms
et al, “
Terahertz radiation driven chiral edge currents in graphene
,”
Phys. Rev. Lett.
107
,
276601
(
2011
).
53.
T.
Takenaka
,
K.
Ishihara
,
M.
Roppongi
,
Y.
Miao
,
Y.
Mizukami
,
T.
Makita
,
J.
Tsurumi
,
S.
Watanabe
,
J.
Takeya
,
M.
Yamashita
et al, “
Strongly correlated superconductivity in a copper-based metal-organic framework with a perfect kagome lattice
,”
Sci. Adv.
7
,
eabf3996
(
2021
).
54.
W.
Jiang
,
X.
Ni
, and
F.
Liu
, “
Exotic topological bands and quantum states in metal–organic and covalent–organic frameworks
,”
Acc. Chem. Res.
54
,
416
426
(
2021
).
55.
B.
Cui
,
X.
Zheng
,
J.
Wang
,
D.
Liu
,
S.
Xie
, and
B.
Huang
, “
Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism
,”
Nat. Commun.
11
,
66
(
2020
).
56.
Z.
Zhang
,
J.
Dai
,
C.
Wang
,
H.
Zhu
,
F.
Pang
,
Z.
Cheng
, and
W.
Ji
, “
2D Kagome materials: Theoretical insights, experimental realizations, and electronic structures
,”
Adv. Funct. Mater.
35
,
2416508
(
2025
).
57.
G.
Galeotti
,
F. D.
Marchi
,
E.
Hamzehpoor
,
O.
MacLean
,
M.
Rajeswara Rao
,
Y.
Chen
,
L. V.
Besteiro
,
D.
Dettmann
,
L.
Ferrari
,
F.
Frezza
et al, “
Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties
,”
Nat. Mater.
19
,
874
880
(
2020
).
58.
S.
Kumar
,
G.
Kumar
,
A.
Kumar
, and
P.
Parida
, “
Engineering a two-dimensional kagome topological insulator from porous graphene
,”
Appl. Phys. Lett.
125
,
253103
(
2024b
).
59.
L.-L.
Ye
,
C.-D.
Han
, and
Y.-C.
Lai
, “
Optical properties of two-dimensional Dirac–Weyl materials with a flatband
,”
Appl. Phys. Lett.
124
,
060501
(
2024
).
60.
C.-D.
Han
and
Y.-C.
Lai
, “
Optical response of two-dimensional Dirac materials with a flat band
,”
Phys. Rev. B
105
,
155405
(
2022
).
You do not currently have access to this content.