Two-dimensional tellurium (Te) has been intensely studied in recent years due to its outstanding electrical properties and excellent air stability. Simple and effective contact engineering is highly desirable to further improve its device performance. In this work, we demonstrate a simple strategy to largely improve the metal–Te contact quality by forming an ultrathin tellurium oxide layer in the contact region via O2 plasma treatment. The surface oxide doped the underlying Te layers degenerately due to charge transfer, establishing an Ohmic contact between Pd electrode and Te with negative Schottky barrier under flatband condition. This enables Te field-effect transistor to achieve outstanding electronic performance, including a record-low contact resistance of ∼0.16 kΩ·μm and a high field-effect mobility of ∼1015 cm2V−1s−1 (∼3002 cm2V−1s−1) at room temperature (low temperature). The simplicity and CMOS compatibility of O2 plasma treatment make it a promising candidate for applications in Te-based large-scale integrated circuits.

1.
Y.
Wang
,
G.
Qiu
,
R.
Wang
,
S.
Huang
,
Q.
Wang
,
Y.
Liu
,
Y.
Du
,
W. A.
Goddard
,
M. J.
Kim
,
X.
Xu
,
P. D.
Ye
, and
W.
Wu
,
Nat. Electron.
1
,
228
236
(
2018
).
2.
Z.
Zhu
,
X.
Cai
,
S.
Yi
,
J.
Chen
,
Y.
Dai
,
C.
Niu
,
Z.
Guo
,
M.
Xie
,
F.
Liu
,
J.-H.
Cho
,
Y.
Jia
, and
Z.
Zhang
,
Phys. Rev. Lett.
119
,
106101
(
2017
).
3.
J.
Qiao
,
Y.
Pan
,
F.
Yang
,
C.
Wang
,
Y.
Chai
, and
W.
Ji
,
Sci. Bull.
63
,
159
168
(
2018
).
4.
X.
Zhang
,
H.
Yu
,
W.
Tang
,
X.
Wei
,
L.
Gao
,
M.
Hong
,
Q.
Liao
,
Z.
Kang
,
Z.
Zhang
, and
Y.
Zhang
,
Adv. Mater.
34
,
2109521
(
2022
).
5.
J.
Qi
,
Y.
Dai
,
C.
Ma
,
C.
Ke
,
W.
Wang
,
Z.
Wu
,
X.
Wang
,
K.
Bao
,
Y.
Xu
,
H.
Huang
,
L.
Wang
,
J.
Wu
,
G.
Luo
,
Y.
Chen
,
Z.
Lin
, and
Q.
He
,
Adv. Mater.
36
,
2306962
(
2024
).
6.
P.
Yang
,
J.
Zha
,
G.
Gao
,
L.
Zheng
,
H.
Huang
,
Y.
Xia
,
S.
Xu
,
T.
Xiong
,
Z.
Zhang
,
Z.
Yang
,
Y.
Chen
,
D.-K.
Ki
,
J. J.
Liou
,
W.
Liao
, and
C.
Tan
,
Nano-Micro Lett.
14
,
109
(
2022
).
7.
T.
Huang
,
S.
Lin
,
J.
Zou
,
Z.
Wang
,
Y.
Zhong
,
J.
Li
,
R.
Wang
,
Z.
Wang
,
K.
St. Luce
,
R.
Kim
,
J.
Cui
,
H.
Wang
,
Q.
Li
,
M.
Xu
,
S.
Shen
, and
X.
Zhang
,
ACS Appl. Mater. Interfaces
17
,
1861
1868
(
2025
).
8.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
150
(
2011
).
9.
K.
Kang
,
S.
Xie
,
L.
Huang
,
Y.
Han
,
P. Y.
Huang
,
K. F.
Mak
,
C.-J.
Kim
,
D.
Muller
, and
J.
Park
,
Nature
520
,
656
660
(
2015
).
10.
R.
Kappera
,
D.
Voiry
,
S. E.
Yalcin
,
B.
Branch
,
G.
Gupta
,
A. D.
Mohite
, and
M.
Chhowalla
,
Nat. Mater.
13
,
1128
1134
(
2014
).
11.
J.
Zhu
,
J.-H.
Park
,
S. A.
Vitale
,
W.
Ge
,
G. S.
Jung
,
J.
Wang
,
M.
Mohamed
,
T.
Zhang
,
M.
Ashok
,
M.
Xue
,
X.
Zheng
,
Z.
Wang
,
J.
Hansryd
,
A. P.
Chandrakasan
,
J.
Kong
, and
T.
Palacios
,
Nat. Nanotechnol.
18
,
456
463
(
2023
).
12.
Z.
Zhang
,
L.
Hoang
,
M.
Hocking
,
Z.
Peng
,
J.
Hu
,
G.
Zaborski
, Jr.
,
P. D.
Reddy
,
J.
Dollard
,
D.
Goldhaber-Gordon
,
T. F.
Heinz
,
E.
Pop
, and
A. J.
Mannix
,
ACS Nano
18
,
25414
25424
(
2024
).
13.
C.
Zhang
,
E.
Li
,
C.
Gao
,
R.
Wang
,
X.
Liu
,
Y.
Liu
,
F.
Yuan
,
W.
Shi
,
Y.-F.
Lin
,
J.
Chu
, and
W.
Li
,
Nano Lett.
25
,
655
662
(
2025
).
14.
L.
Li
,
Y.
Yu
,
G. J.
Ye
,
Q.
Ge
,
X.
Ou
,
H.
Wu
,
D.
Feng
,
X. H.
Chen
, and
Y.
Zhang
,
Nat. Nanotechnol.
9
,
372
377
(
2014
).
15.
J. O.
Island
,
G. A.
Steele
,
H. S. J.
van der Zant
, and
A.
Castellanos-Gomez
,
2D Mater.
2
,
011002
(
2015
).
16.
M. T.
Edmonds
,
A.
Tadich
,
A.
Carvalho
,
A.
Ziletti
,
K. M.
O'Donnell
,
S. P.
Koenig
,
D. F.
Coker
,
B.
Oezyilmaz
,
A. H.
Castro Neto
, and
M. S.
Fuhrer
,
ACS Appl. Mater. Interfaces
7
,
14557
14562
(
2015
).
17.
P.
Li
,
D.
Zhang
,
J.
Liu
,
H.
Chang
,
Y.
Sun
, and
N.
Yin
,
ACS Appl. Mater. Interfaces
7
,
24396
24402
(
2015
).
18.
C.
Zhao
,
C.
Tan
,
D.-H.
Lien
,
X.
Song
,
M.
Amani
,
M.
Hettick
,
H. Y. Y.
Nyein
,
Z.
Yuan
,
L.
Li
,
M. C.
Scott
, and
A.
Javey
,
Nat. Nanotechnol.
15
,
53
58
(
2020
).
19.
J.
Chen
,
Y.
Zhou
,
J.
Yan
,
J.
Liu
,
L.
Xu
,
J.
Wang
,
T.
Wan
,
Y.
He
,
W.
Zhang
, and
Y.
Chai
,
Nat. Commun.
13
,
7758
(
2022
).
20.
D. C.
Tran
,
G. H.
Pham
,
T. T.
Huong Chu
,
J.
Kim
,
J. K.
Jeong
,
S.
Im
,
B. H.
Lee
, and
M. M.
Sung
,
Nano Lett.
24
,
16276
16282
(
2024
).
21.
P.
Tan
,
C.
Niu
,
Z.
Lin
,
J.-Y.
Lin
,
L.
Long
,
Y.
Zhang
,
G.
Wilk
,
H.
Wang
, and
P. D.
Ye
,
Nano Lett.
24
,
12433
12441
(
2024
).
22.
M.
Amani
,
C.
Tan
,
G.
Zhang
,
C.
Zhao
,
J.
Bullock
,
X.
Song
,
H.
Kim
,
V. R.
Shrestha
,
Y.
Gao
,
K. B.
Crozier
,
M.
Scott
, and
A.
Javey
,
ACS Nano
12
,
7253
7263
(
2018
).
23.
S.
Berweger
,
G.
Qiu
,
Y.
Wang
,
B.
Pollard
,
K. L.
Genter
,
R.
Tyrrell-Ead
,
T. M.
Wallis
,
W.
Wu
,
P. D.
Ye
, and
P.
Kabos
,
Nano Lett.
19
,
1289
1294
(
2019
).
24.
IRDS 2.0
, see https://irds.ieee.org/editions for “IRDS™ 2017 edition” (accessed January 10,
2022
).
25.
H.-Y.
Park
,
W.-S.
Jung
,
D.-H.
Kang
,
J.
Jeon
,
G.
Yoo
,
Y.
Park
,
J.
Lee
,
Y. H.
Jang
,
J.
Lee
,
S.
Park
,
H.-Y.
Yu
,
B.
Shin
,
S.
Lee
, and
J.-H.
Park
,
Adv. Mater.
28
,
864
870
(
2016
).
26.
W.
Jiang
,
X.
Wang
,
Y.
Chen
,
S.
Wu
,
B.
Wu
,
X.
Yang
,
T.
Lin
,
H.
Shen
,
X.
Meng
,
X.
Wu
,
J.
Chu
, and
J.
Wang
,
ACS Appl. Mater. Interfaces
13
,
7766
7772
(
2021
).
27.
Z.
Lin
,
J.
Wang
,
J.
Chen
,
C.
Wang
,
J.
Liu
,
W.
Zhang
, and
Y.
Chai
,
Adv. Electron. Mater.
8
,
2200380
(
2022
).
28.
X.
Liu
,
D.
Qu
,
Y.
Yuan
,
J.
Sun
, and
W. J.
Yoo
,
ACS Appl. Mater. Interfaces
12
,
26586
26592
(
2020
).
29.
D.
Yue
,
X.
Ju
,
T.
Hu
,
X.
Rong
,
X.
Liu
,
X.
Liu
,
H. K.
Ng
,
D.
Chi
,
X.
Wang
, and
J.
Wu
,
Nanoscale
15
,
4940
4950
(
2023
).
30.
W.
Xu
,
L.
Gan
,
R.
Wang
,
X.
Wu
, and
H.
Xu
,
ACS Appl. Mater. Interfaces
12
,
19110
19115
(
2020
).
You do not currently have access to this content.