Photocatalytic water splitting is a promising route for clean energy production, yet remains constrained by poor carrier utilization and low solar-to-hydrogen (STH) efficiency. Here, we demonstrate the role of out-of-plane polarization in addressing these limitations by using 1H phase Cr-based Janus monolayers. The out-of-plane polarization optimizes band edges to match water redox potentials at pH = 0, and the out-of-plane piezoelectric electron redistribution via the Poisson effect extends photocatalytic activity to full pH levels. The Janus homojunction constructed from these monolayers inherits the optimized overpotential and naturally forms a type-II band alignment, and dipole-induced electric field further drives the segregated carriers to opposite sides participating in the respective half-reactions, facilitating exciton dissociation. Remarkably, out-of-plane polarization can break traditional bandgap lower limits of 1.23 eV, which enhances light absorption and boosts STH efficiency to 38.1% for the CrSSe homojunction at pH = 0 and 37% for the −2.5% CrSeTe homojunction in the pH range of 7–11. This work highlights the out-of-plane polarization as a powerful strategy to enhance photocatalytic water splitting performance, offering insight for designing high-efficiency photocatalysts.

1.
P.
Zhou
,
I. A.
Navid
,
Y.
Ma
,
Y.
Xiao
,
P.
Wang
,
Z.
Ye
,
B.
Zhou
,
K.
Sun
, and
Z.
Mi
, “
Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting
,”
Nature
613
,
66
70
(
2023
).
2.
C.
Xia
,
H.
Wang
,
J. K.
Kim
, and
J.
Wang
, “
Rational design of metal oxide‐based heterostructure for efficient photocatalytic and photoelectrochemical systems
,”
Adv. Funct. Mater.
31
,
2008247
(
2020
).
3.
L.
Pan
,
Y.-L.
Wan
,
C.-E.
Hu
,
Z.-Y.
Zeng
,
H.-Y.
Geng
, and
X.-R.
Chen
, “
Two-dimensional ferroelastic semiconductors InXY (X = S, Se; Y = Cl, Br, I): Promising candidates for photocatalytic water splitting with tunable electronic anisotropy
,”
Appl. Phys. Lett.
125
,
103901
(
2024
).
4.
D.
Hansora
,
J. W.
Yoo
,
R.
Mehrotra
,
W. J.
Byun
,
D.
Lim
,
Y. K.
Kim
,
E.
Noh
,
H.
Lim
,
J.-W.
Jang
,
S. I.
Seok
, and
J. S.
Lee
, “
All-perovskite-based unassisted photoelectrochemical water splitting system for efficient, stable and scalable solar hydrogen production
,”
Nat. Energy
9
,
272
284
(
2024
).
5.
Y.
Li
,
H.
Zhou
,
S.
Cai
,
D.
Prabhakaran
,
W.
Niu
,
A.
Large
,
G.
Held
,
R. A.
Taylor
,
X.-P.
Wu
, and
S. C. E.
Tsang
, “
Electrolyte-assisted polarization leading to enhanced charge separation and solar-to-hydrogen conversion efficiency of seawater splitting
,”
Nat. Catal.
7
,
77
88
(
2024
).
6.
X.
Li
,
Z.
Li
, and
J.
Yang
, “
Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light
,”
Phys. Rev. Lett.
112
,
018301
(
2014
).
7.
Y.
Gao
,
Q.
Zhang
,
W.
Hu
, and
J.
Yang
, “
First-principles computational screening of two-dimensional polar materials for photocatalytic water splitting
,”
ACS Nano
18
,
19381
19390
(
2024
).
8.
Q.
Li
,
G.
Zhao
,
H.
Huang
,
M.
Tao
,
L.-L.
Wang
,
X.
Zhu
, and
N.-N.
Luo
, “
Limiting and achievable efficiencies of solar-to-hydrogen in heterojunction photocatalysts
,”
Appl. Phys. Lett.
125
,
263901
(
2024
).
9.
D. H.
Ozbey
,
M. E.
Kilic
, and
E.
Durgun
, “
Two-dimensional Janus GePAs monolayer: A direct-band-gap semiconductor with high and anisotropic mobility for efficient photocatalytic water splitting
,”
Phys. Rev. Appl.
17
,
034043
(
2022
).
10.
J. C. A.
Vidhya Chakrapani
,
A. B.
Anderson
,
S. D.
Wolter
, and
G. U. S. B. R.
Stoner
, “
Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple
,”
Science
318
,
1424
1430
(
2007
).
11.
L.
Liccardo
,
M.
Bordin
,
P. M.
Sheverdyaeva
,
M.
Belli
,
P.
Moras
,
A.
Vomiero
, and
E.
Moretti
, “
Surface defect engineering in colored TiO2 hollow spheres toward efficient photocatalysis
,”
Adv. Funct. Mater.
33
,
2212486
(
2023
).
12.
M.
Rafique
,
S.
Hajra
,
M.
Irshad
,
M.
Usman
,
M.
Imran
,
M. A.
Assiri
, and
W. M.
Ashraf
, “
Hydrogen production using TiO2-based photocatalysts: A comprehensive review
,”
ACS Omega
8
,
25640
25648
(
2023
).
13.
C.
Liu
,
Y.
Qiu
,
C.
Zhou
, and
H.
Dong
, “
Tunable long-lived exciton lifetime and high carrier mobilities in Group IIIA elements doped two-dimensional blue phosphorene: A time domain ab initio study
,”
Appl. Phys. Lett.
125
,
114103
(
2024
).
14.
S. K.
Lakhera
,
K. P.
Kangeyan
,
S.
Crescentia Yazhini
,
A.
Shiny Golda
, and
N.
Bernaurdshaw
, “
Advances in hybrid strategies for enhanced photocatalytic water splitting: Bridging conventional and emerging methods
,”
Appl. Phys. Rev.
11
,
041305
(
2024
).
15.
Y. J.
Zhang
,
T.
Ideue
,
M.
Onga
,
F.
Qin
,
R.
Suzuki
,
A.
Zak
,
R.
Tenne
,
J. H.
Smet
, and
Y.
Iwasa
, “
Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes
,”
Nature
570
,
349
353
(
2019
).
16.
C. J.
Tong
,
L.
Li
,
L. M.
Liu
, and
O. V.
Prezhdo
, “
Synergy between ion migration and charge carrier recombination in metal-halide perovskites
,”
J. Am. Chem. Soc.
142
,
3060
3068
(
2020
).
17.
T.
Zheng
,
Y. C.
Lin
,
Y.
Yu
,
P.
Valencia Acuna
,
A. A.
Puretzky
,
R.
Torsi
,
C.
Liu
,
IN.
Ivanov
,
G.
Duscher
,
D. B.
Geohegan
,
Z.
Ni
,
K.
Xiao
, and
H.
Zhao
, “
Excitonic dynamics in Janus MoSSe and WSSe monolayers
,”
Nano Lett.
21
,
931
937
(
2021
).
18.
M.
Alihosseini
and
M.
Neek-Amal
, “
Strain tuning of optoelectronic properties of covalent organic framework bilayers and heterostructures
,”
Phys. Rev. B
108
,
165403
(
2023
).
19.
W.
Wang
,
Q.
Song
,
Q.
Luo
,
L.
Li
,
X.
Huo
,
S.
Chen
,
J.
Li
,
Y.
Li
,
S.
Shi
,
Y.
Yuan
,
X.
Du
,
K.
Zhang
, and
N.
Wang
, “
Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater
,”
Nat. Commun.
14
,
2493
(
2023
).
20.
M.
Qian
,
X.-L.
Wu
,
M.
Lu
,
L.
Huang
,
W.
Li
,
H.
Lin
,
J.
Chen
,
S.
Wang
, and
X.
Duan
, “
Modulation of charge trapping by island-like single-atom cobalt catalyst for enhanced photo-fenton-like reaction
,”
Adv. Funct. Mater.
33
,
2208688
(
2023
).
21.
C.-F.
Fu
,
Q.
Zheng
,
X.
Li
, and
J.
Yang
, “
Vertical dipole dominates charge carrier lifetime in monolayer Janus MoSSe
,”
Nano Lett.
24
,
6425
6432
(
2024
).
22.
E.
Torun
,
F.
Paleari
,
M. V.
Milošević
,
L.
Wirtz
, and
C.
Sevik
, “
Intrinsic control of interlayer exciton generation in van der Waals materials via Janus layers
,”
Nano Lett.
23
,
3159
3166
(
2023
).
23.
A.
Chauhan
,
M.
Rastogi
,
P.
Scheier
,
C.
Bowen
,
R. V.
Kumar
, and
R.
Vaish
, “
Janus nanostructures for heterogeneous photocatalysis
,”
Appl. Phys. Rev.
5
,
041111
(
2018
).
24.
R. C.
Andrew
,
R. E.
Mapasha
,
A. M.
Ukpong
, and
N.
Chetty
, “
Mechanical properties of graphene and boronitrene
,”
Phys. Rev. B
85
,
125428
(
2012
).
25.
A.
Strasser
,
H.
Wang
, and
X.
Qian
, “
Nonlinear optical and photocurrent responses in Janus MoSSe monolayer and MoS2–MoSSe van der Waals heterostructure
,”
Nano Lett.
22
,
4145
4152
(
2022
).
26.
L.
Li
,
Z.-X.
Yang
,
T.
Huang
,
H.
Wan
,
W.-Y.
Chen
,
T.
Zhang
,
G.-F.
Huang
,
W.
Hu
, and
W.-Q.
Huang
, “
Doping-free Janus homojunction solar cell with efficiency exceeding 23%
,”
Appl. Phys. Lett.
125
,
223904
(
2024
).
27.
J.
Kopaczek
,
M. Y.
Sayyad
,
C.-L.
Wu
,
R.
Sailus
,
R.
Kudrawiec
, and
S. A.
Tongay
, “
Impact of polarization field architecture on excitonic properties of 2D Janus homobilayers
,”
Nano Lett.
24
,
15700
15706
(
2024
).
28.
H.
Sheng
,
Z.
Fang
, and
Z.
Wang
, “
Ferroelectric metals in 1T/1T′-phase transition metal dichalcogenide MTe2 bilayers (M = Pt, Pd, and Ni)
,”
Phys. Rev. B
108
,
104109
(
2023
).
29.
Z.
Chen
,
T. F.
Jaramillo
,
T. G.
Deutsch
,
A.
Kleiman-Shwarsctein
,
A. J.
Forman
,
N.
Gaillard
,
R.
Garland
,
K.
Takanabe
,
C.
Heske
,
M.
Sunkara
,
E. W.
McFarland
,
K.
Domen
,
E. L.
Miller
,
J. A.
Turner
, and
H. N.
Dinh
, “
Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols
,”
J. Mater. Res.
25
,
3
16
(
2010
).
30.
C.-F.
Fu
,
J.
Sun
,
Q.
Luo
,
X.
Li
,
W.
Hu
, and
J.
Yang
, “
Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting
,”
Nano Lett.
18
,
6312
6317
(
2018
).
31.
H.
Qiao
,
Y.
Zhang
,
Z.-H.
Yan
,
L.
Duan
,
L.
Ni
, and
J.-B.
Fan
, “
A type-II GaN/InS van der Waals heterostructure with high solar-to-hydrogen efficiency of photocatalyst for water splitting
,”
Appl. Surf. Sci.
604
,
154602
(
2022
).
32.
X.
Ma
,
W.
Chu
,
Y.
Wang
,
Z.
Li
, and
J.
Yang
, “
Increasing the efficiency of photocatalytic water splitting via introducing intermediate bands
,”
J. Phys. Chem. Lett.
14
,
779
784
(
2023
).
You do not currently have access to this content.