This study introduces a cutting-edge approach for achieving precise non-contact characterization of material hardness by integrating electromagnetic acoustic resonance (EMAR) with a one-dimensional convolutional neural network (1D-CNN). EMAR is strategically utilized to address the challenge of low energy conversion efficiency in electromagnetic ultrasonic transducers for non-contact measurements. A 1D-CNN-based neural network is proposed, designed to dynamically extract features from the original signals and employ classification and regression techniques to directly forecast variations in material hardness. Furthermore, EMAR signals are meticulously compared to pinpoint the optimal input featuring specific resonant frequencies to enhance model performance. The viability of the proposed method is rigorously validated through experimentation on metallic specimens subjected to diverse heat treatments. The results underscore the efficacy of this approach in discerning alterations in material hardness induced by heat treatments, all achieved in a noninvasive manner.

1.
Z.
Duan
,
Y.
Kang
,
Y.
Chen
,
Z.
Wan
, and
S.
Wang
, “
Reduction of lift-off effect in pulsed eddy current testing for surface hardness classification of ferromagnetic steel
,”
Measurement
205
,
112191
(
2022
).
2.
H.-Y.
Chung
,
M. B.
Weinberger
,
J.-M.
Yang
,
S. H.
Tolbert
, and
R. B.
Kaner
, “
Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2
,”
Appl. Phys. Lett.
92
,
261904
(
2008
).
3.
J.
Cortez
,
A. D.
Dupuy
,
H.
Vahidi
,
O. K.
Donaldson
,
W. J.
Bowman
,
T. J.
Rupert
, and
J. M.
Schoenung
, “
Grain size dependent indentation response of single-phase (CoCuMgNiZn) O high entropy oxides
,”
J. Eur. Ceram. Soc.
44
,
116673
(
2024
).
4.
D.
Dickes
,
Y.
Zhao
,
F.
Baier
,
B.
Öztürk
,
R.
Völkl
,
T.
Li
,
M. C.
Galetz
, and
U.
Glatzel
, “
Influence of oxygen ingress on microstructure and phase formation during two-step oxidation surface hardening of TiZrNbHfTa high entropy alloy
,”
Appl. Phys. Lett.
124
,
071903
(
2024
).
5.
F.
Wang
,
D.
Qian
,
H.
Mao
,
Y.
He
, and
B.
Shu
, “
Evolution of microstructure and mechanical properties during tempering of M50 steel with bainite/martensite duplex structure
,”
J. Mater. Res. Technol.
9
,
6712
6722
(
2020
).
6.
A.
Zafra
,
L. B.
Peral
,
J.
Belzunce
, and
C.
Rodríguez
, “
Effects of hydrogen on the fracture toughness of 42CrMo4 steel quenched and tempered at different temperatures
,”
Int. J. Pressure Vessels Piping
171
,
34
50
(
2019
).
7.
X.
Wang
,
C.
He
,
P.
Li
,
X.
Liu
,
Z.
Xing
, and
Z.
Yan
, “
Micromagnetic and quantitative prediction of surface hardness in carbon steels based on a joint classification-regression method
,”
J. Nondestruct. Eval.
41
,
62
(
2022
).
8.
J.
Sha
,
M.
Fan
, and
B.
Ye
, “
Intelligent hardness prediction of bearing rings using pulsed eddy current testing
,”
IEEE Sens. J.
22
,
23320
23327
(
2022
).
9.
P.
Men
,
S.
Dong
,
X.
Kang
,
S.
Yan
,
Z.
Cheng
, and
R.
Lv
, “
Research on the method of quantitative evaluating material hardness and tensile strength by critically refracted longitudinal wave
,”
Appl. Acoust.
159
,
107105
(
2020
).
10.
G.
Zhai
,
B.
Liang
,
X.
Li
,
Y.
Ge
, and
S.
Wang
, “
High-temperature EMAT with double-coil configuration generates shear and longitudinal wave modes in paramagnetic steel
,”
NDT E Int.
125
,
102572
(
2022
).
11.
D.
Koodalil
,
P.
Rajagopal
, and
K.
Balasubramaniam
, “
Bond stiffness estimation with shear horizontal guided waves generated using PPM-EMATs
,”
Int. J. Adhes. Adhes.
104
,
102761
(
2021
).
12.
P.
Wang
,
Y.
Zhang
,
E.
Yao
,
Y.
Mi
,
Y.
Zheng
, and
C.
Tang
, “
Method of measuring the mechanical properties of ferromagnetic materials based on magnetostrictive EMAT characteristic parameters
,”
Measurement
168
,
108187
(
2021
).
13.
L.
Kang
,
A.
Feeney
, and
S.
Dixon
, “
Wideband electromagnetic dynamic acoustic transducers (WEMDATs) for air-coupled ultrasonic applications
,”
Appl. Phys. Lett.
114
,
053505
(
2019
).
14.
R.
Benegal
,
F.
Karimi
,
T.
Filleter
, and
A. N.
Sinclair
, “
Optimization of periodic permanent magnet configuration in lorentz-force EMATs
,”
Res. Nondestruct. Eval.
29
,
95
108
(
2018
).
15.
W.
Li
,
C.
Jiang
, and
M.
Deng
, “
Thermal damage assessment of metallic plates using a nonlinear electromagnetic acoustic resonance technique
,”
NDT E Int.
108
,
102172
(
2019
).
16.
L.
Kang
,
C.
Zhang
,
S.
Dixon
,
H.
Zhao
,
S.
Hill
, and
M.
Liu
, “
Enhancement of ultrasonic signal using a new design of Rayleigh-wave electromagnetic acoustic transducer
,”
NDT E Int.
86
,
36
43
(
2017
).
17.
G.
Dang
,
C.
Pei
,
T.
Liu
,
C.
Xie
,
D.
Liu
,
W.
Mao
, and
Z.
Chen
, “
Noncontact and rapid measurement of elastic properties of metals with a dual-mode bulk-wave EMAT
,”
Nondestruct. Test. Eval.
39
,
995
1008
(
2024
).
18.
A.
Moreno-Gobbi
,
P. S.
Silva
,
D. R.
Nespeque Correa
,
A. M.
Milá
,
J. A.
Muñoz Chaves
,
C. R.
Grandini
,
R. F.
Macedo
dos Santos
, and
C. R.
Moreira Afonso
, “
Experimental assessment of low-temperature martensite transformations in Ni-rich polycrystalline Ni–Ti alloys
,”
J. Mater. Res. Technol.
18
,
4990
5004
(
2022
).
19.
A.
Ruiz
,
V. M.
Rodríguez
,
H. G.
Becerra
, and
J.-Y.
Kim
, “
Ultrasonic characterization of microstructural changes due to static recrystallization and grain growth in Inconel 625 and Inconel 718 superalloys
,”
Ultrasonics
142
,
107383
(
2024
).
20.
T.
Ohtani
,
Y.
Ishii
,
M.
Tabuchi
,
H.
Hongo
, and
K.
Sawada
, “
Creep-induced nonlinear acoustic characterizations and microstructural change in an austenitic stainless steel
,”
Mater. Charact.
197
,
112657
(
2023
).
21.
X.
Yuan
,
W.
Li
, and
M.
Deng
, “
Non-contact characterization of material anisotropy of additive manufacturing components by electromagnetic acoustic resonance technique
,”
Meas. Sci. Technol.
35
,
026001
(
2024
).
22.
K. H.
Jin
,
M. T.
McCann
,
E.
Froustey
, and
M.
Unser
, “
Deep convolutional neural network for inverse problems in imaging
,”
IEEE Trans. Image Process.
26
,
4509
4522
(
2017
).
23.
H.
Li
,
J.
Schwab
,
S.
Antholzer
, and
M.
Haltmeier
, “
NETT: Solving inverse problems with deep neural networks
,”
Inverse Probl.
36
,
065005
(
2020
).
24.
C.
Zhang
,
Y.
Hu
,
M.
Deng
, and
W.
Li
, “
Deep learning-assisted local resonance strategy for accurate internal damage imaging in composites
,”
Appl. Phys. Lett.
125
,
194102
(
2024
).
25.
M. I. U.
Haque
,
A.
Lebron
,
F. J. D.
Alvarez
,
J. F.
Neal
,
M.
Mamak
,
D.
Mukherjee
,
O. S.
Ovchinnikova
, and
J. D.
Hinkle
, “
Deep learning-driven super-resolution in Raman hyperspectral imaging: Efficient high-resolution reconstruction from low-resolution data
,”
Appl. Phys. Lett.
125
,
204104
(
2024
).
26.
Y.
Yan
,
D.
Liu
,
B.
Gao
,
G. Y.
Tian
, and
Z. C.
Cai
, “
A deep learning-based ultrasonic pattern recognition method for inspecting girth weld cracking of gas pipeline
,”
IEEE Sens. J.
20
,
7997
8006
(
2020
).
27.
R. F. R.
Junior
,
I.
Areias
,
M. M.
Campos
,
C. E.
Teixeira
,
L. E. B.
da Silva
, and
G. F.
Gomes
, “
Fault detection and diagnosis in electric motors using 1d convolutional neural networks with multi-channel vibration signals
,”
Measurement
190
,
110759
(
2022
).
28.
R.
Liu
,
B.
Yang
,
E.
Zio
, and
X.
Chen
, “
Artificial intelligence for fault diagnosis of rotating machinery: A review
,”
Mech. Syst. Signal Proc.
108
,
33
47
(
2018
).
29.
S.-G.
Kim
,
J.-Y.
Kim
, and
B.
Hwang
, “
Effect of tempering temperature on hydrogen embrittlement of SCM440 tempered martensitic steel
,”
Materials
16
,
5709
(
2023
).
30.
Y.
Zhang
,
R.
Yuan
,
J.
Yang
,
D.
Xiao
,
D.
Luo
,
W.
Zhou
,
C.
Tuo
,
H.
Wu
, and
G.
Niu
, “
Effect of tempering on corrosion behavior and mechanism of low alloy steel in wet atmosphere
,”
J. Mater. Res. Technol.
20
,
4077
4096
(
2022
).
31.
M.
Soleimani
,
H.
Mirzadeh
, and
C.
Dehghanian
, “
Effects of tempering on the mechanical and corrosion properties of dual phase steel
,”
Mater. Today Commun.
22
,
100745
(
2020
).
32.
P.
Ni
,
W.
Shi
,
H.
Lu
,
B.
Zhang
, and
H.
Dong
, “
Effect of tempering temperature on low-temperature impact toughness of 35MnB steel
,”
J. Mater. Res. Technol.
34
,
2463
2476
(
2025
).
33.
T.
Hua
,
Z.
Guo
,
K.
Jing
,
J.
Xiong
,
J.
Liao
, and
J.
Liu
, “
Residual stress evolution enhanced martensite phase transition and texture development in cryogenic-tempered WC-Co ultra-coarse grained cemented carbide
,”
Mater. Sci. Eng., A
834
,
142592
(
2022
).
34.
H.
Zhou
,
V.
Khonik
, and
G.
Wilde
, “
On the shear modulus and thermal effects during structural relaxation of a model metallic glass: Correlation and thermal decoupling
,”
J. Mater. Sci. Technol.
103
,
144
151
(
2022
).
You do not currently have access to this content.