Transition metal oxides (TMOs) have attracted considerable attention for carrier-selective passivation contacts in crystalline silicon (c-Si) heterojunction solar cells. Among them, zirconium dioxide (ZrO2) exhibits outstanding advantages, such as high permittivity, the presence of fixed negative charges, and high thermal stability. However, it is usually considered incapable of being used as passivation contacts due to its ultra-wide (5.8 eV) bandgap and mismatched energy band structure. In this work, we have demonstrated that ZrO2 films act as hole-selective layers by elaborately regulating oxygen vacancies (VO). ZrO2 films (∼9 nm) prepared by the solution method provide a high surface passivation of p-Si with an effective carrier lifetime of 302 μs. The Al3+ doping not only increases the VO concentrations in the films but also changes the ratio of different categories of VO defects, significantly improving the hole transport properties, with the contact resistivity reduced from 246 to 52 mΩ·cm2. The p-Si/ZrO2:Al3+/Ag structured solar cell reaches a high conversion efficiency of 19.5%. This work shows that ultra-wide bandgap semiconductor materials have great potential as passivation contact layers by modulating the trap defects.

1.
T. G.
Allen
,
J.
Bullock
,
X.
Yang
,
A.
Javey
, and
S.
De Wolf
, “
Passivating contacts for crystalline silicon solar cells
,”
Nat. Energy
4
(
11
),
914
928
(
2019
).
2.
B.
Liang
,
X.
Chen
,
X.
Wang
,
H.
Yuan
,
A.
Sun
,
Z.
Wang
,
L.
Hu
,
G.
Hou
,
Y.
Zhao
, and
X.
Zhang
, “
Progress in crystalline silicon heterojunction solar cells
,”
J. Mater. Chem. A
13
(
4
),
2441
2477
(
2025
).
3.
J.
Haschke
,
O.
Dupré
,
M.
Boccard
, and
C.
Ballif
, “
Silicon heterojunction solar cells: Recent technological development and practical aspects-from lab to industry
,”
Sol. Energy Mater. Sol. Cells
187
,
140
153
(
2018
).
4.
H.
Yousuf
,
M. Q.
Khokhar
,
S.
Chowdhury
,
D. P.
Pham
,
Y.
Kim
,
M.
Ju
,
Y.
Cho
,
E.-C.
Cho
, and
J.
Yi
, “
A review on TOPCon solar cell technology
,”
Curr. Photovoltaics Res.
9
(
3
),
75
83
(
2021
).
5.
X.
Li
,
Q.
Wang
,
X.
Dong
,
J.
Li
,
X.
Zhang
,
N.
Yuan
,
L.
Li
, and
J.
Ding
, “
Optimization of efficiency enhancement of TOPCon cells with boron selective emitter
,”
Sol. Energy Mater. Sol. Cells
263
,
112585
(
2023
).
6.
J.
Ibarra Michel
,
J.
Dréon
,
M.
Boccard
,
J.
Bullock
, and
B.
Macco
, “
Carrier‐selective contacts using metal compounds for crystalline silicon solar cells
,”
Prog. Photovoltaics
31
(
4
),
380
413
(
2023
).
7.
S.
Acharyya
,
S.
Sadhukhan
,
T.
Panda
,
D. K.
Ghosh
,
N. C.
Mandal
,
A.
Nandi
,
S.
Bose
,
G.
Das
,
S.
Maity
,
P.
Chaudhuri
,
H.
Saha
, and
D.
Banerjee
, “
Dopant-free materials for carrier-selective passivating contact solar cells: A review
,”
Surf. Interfaces
28
,
101687
(
2022
).
8.
J.
Bullock
,
Y.
Wan
,
M.
Hettick
,
X.
Zhaoran
,
S. P.
Phang
,
D.
Yan
,
H.
Wang
,
W.
Ji
,
C.
Samundsett
,
Z.
Hameiri
,
D.
Macdonald
,
A.
Cuevas
, and
A.
Javey
, “
Dopant‐free partial rear contacts enabling 23% silicon solar cells
,”
Adv. Energy Mater.
9
(
9
),
1803367
(
2019
).
9.
H.
Cai
,
Z.
Zhong
,
Q.
Nong
,
P.
Gao
, and
J.
He
, “
Design and optimization of SiOx/AZO transparent passivating contacts for high‐efficiency crystalline silicon solar cells
,”
Adv. Funct. Mater.
34
(
52
),
2411207
(
2024
).
10.
D.
Xu
,
Q.
Bi
,
K.
Li
,
K.
Gao
,
X.
Wang
,
W.
Shi
,
S.
Wang
,
C.
Xing
,
X.
Zhang
, and
X.
Yang
, “
High‐performance transparent electron‐selective contact for crystalline silicon solar cells
,”
Adv. Funct. Mater.
34
(
44
),
2407290
(
2024
).
11.
L.
Li
,
L.
Ying
,
Y.
Lin
,
X.
Li
,
X.
Zhou
,
G.
Du
,
Y.
Gao
,
W.
Liu
,
L.
Lu
,
J.
Wang
,
L.
Yang
,
S.
Zhang
, and
D.
Li
, “
Effective hydrogenation strategies to boost efficiency over 20% for crystalline silicon solar cell with Al2O3/Cu2O passivating contact
,”
Adv. Funct. Mater.
32
(
43
),
2207158
(
2022
).
12.
F.
Wang
,
H.
Duan
,
X.
Li
,
S.
Yang
,
D.
Han
,
L.
Yang
,
L.
Fan
,
H.
Liu
,
J.
Yang
, and
F.
Rosei
, “
Gradient doped nickel oxide hole selective heterocontact and ultrathin passivation for silicon photovoltaics with efficiencies beyond 20%
,”
Chem. Eng. J.
450
,
138060
(
2022
).
13.
L.
Cao
,
P.
Procel
,
A.
Alcañiz
,
J.
Yan
,
F.
Tichelaar
,
E.
Özkol
,
Y.
Zhao
,
C.
Han
,
G.
Yang
,
Z.
Yao
,
M.
Zeman
,
R.
Santbergen
,
L.
Mazzarella
, and
O.
Isabella
, “
Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra‐thin MoOx hole collector layer via tailoring (i)a‐Si:H/MoOx interface
,”
Prog. Photovoltaics
31
(
12
),
1245
1254
(
2023
).
14.
E. R.
Costals
,
G.
Masmitjà
,
E.
Almache
,
B.
Pusay
,
K.
Tiwari
,
E.
Saucedo
,
C. J.
Raj
,
B. C.
Kim
,
J.
Puigdollers
,
I.
Martin
,
C.
Voz
, and
P.
Ortega
, “
Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells
,”
Mater. Adv.
3
(
1
),
337
345
(
2022
).
15.
G.
Du
,
L.
Li
,
H.
Zhu
,
L.
Lu
,
X.
Zhou
,
Z.
Gu
,
S.
Zhang
,
X.
Yang
,
J.
Wang
,
L.
Yang
,
X.
Chen
, and
D.
Li
, “
High‐performance hole‐selective V2OX/SiOX/NiOX contact for crystalline silicon solar cells
,”
EcoMat
4
(
3
),
e12175
(
2022
).
16.
C.
Han
,
Y.
Zhao
,
L.
Mazzarella
,
R.
Santbergen
,
A.
Montes
,
P.
Procel
,
G.
Yang
,
X.
Zhang
,
M.
Zeman
, and
O.
Isabella
, “
Room-temperature sputtered tungsten-doped indium oxide for improved current in silicon heterojunction solar cells
,”
Sol. Energy Mater. Sol. Cells
227
,
111082
(
2021
).
17.
Z.
Cui
,
Y.
Pang
,
H.
Tang
,
Z.
Liu
,
T.
Wu
,
Z.
Wang
,
H.
Lin
, and
P.
Gao
, “
Study on the thermal stability of molybdenum oxide‐passivated silicon solar cells
,”
Sol. RRL
8
(
8
),
2300849
(
2024
).
18.
T.
Zhang
,
C.-Y.
Lee
,
Y.
Wan
,
S.
Lim
, and
B.
Hoex
, “
Investigation of the thermal stability of MoOx as hole-selective contacts for Si solar cells
,”
J. Appl. Phys.
124
(
7
),
073106
(
2018
).
19.
M.
Vasilopoulou
,
D. G.
Georgiadou
,
A.
Soultati
,
N.
Boukos
,
S.
Gardelis
,
L. C.
Palilis
,
M.
Fakis
,
G.
Skoulatakis
,
S.
Kennou
,
M.
Botzakaki
,
S.
Georga
,
C. A.
Krontiras
,
F.
Auras
,
D.
Fattakhova‐Rohlfing
,
T.
Bein
,
T. A.
Papadopoulos
,
D.
Davazoglou
, and
P.
Argitis
, “
Atomic‐layer‐deposited aluminum and zirconium oxides for surface passivation of TiO2 in high‐efficiency organic photovoltaics
,”
Adv. Energy Mater.
4
(
15
),
1400214
(
2014
).
20.
J.
Xie
,
Z.
Zhu
,
H.
Tao
,
S.
Zhou
,
Z.
Liang
,
Z.
Li
,
R.
Yao
,
Y.
Wang
,
H.
Ning
, and
J.
Peng
, “
Research progress of high dielectric constant zirconia-based materials for gate dielectric application
,”
Coatings
10
(
7
),
698
(
2020
).
21.
Y.
Wan
,
J.
Bullock
,
M.
Hettick
,
Z.
Xu
,
D.
Yan
,
J.
Peng
,
A.
Javey
, and
A.
Cuevas
, “
Zirconium oxide surface passivation of crystalline silicon
,”
Appl. Phys. Lett.
112
(
20
),
201604
(
2018
).
22.
D.
Fobare
,
P.
Haldar
,
H.
Efstathiadis
,
D.
Metacarpa
,
J.
Wax
,
J.
Olenick
,
K.
Olenick
, and
V.
Venkateswaran
, “
Novel application of yttria stabilized zirconia as a substrate for thin film CIGS solar cells
,” in
IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO
,
2014
.
23.
J.
Sun
,
Y.
Li
,
N.
Tang
,
Y.
Zhou
,
X.
Zhang
,
X.
Lu
,
X.
Gao
,
J.
Gao
,
L.
Shui
,
S.
Wu
, and
J.-M.
Liu
, “
Room-temperature-processed ZrO2 interlayer toward efficient planar perovskite solar cells
,”
ACS Appl. Energy Mater.
3
(
4
),
3328
3336
(
2020
).
24.
A.
Cuevas
,
Y.
Wan
,
D.
Yan
,
C.
Samundsett
,
T.
Allen
,
X.
Zhang
,
J.
Cui
, and
J.
Bullock
, “
Carrier population control and surface passivation in solar cells
,”
Sol. Energy Mater. Sol. Cells
184
,
38
47
(
2018
).
25.
A.
Crovetto
,
M. K.
Huss-Hansen
, and
O.
Hansen
, “
How the relative permittivity of solar cell materials influences solar cell performance
,”
Sol. Energy
149
,
145
150
(
2017
).
26.
S.
Guo
,
G.
Gregory
,
A. M.
Gabor
,
W. V.
Schoenfeld
, and
K. O.
Davis
, “
Detailed investigation of TLM contact resistance measurements on crystalline silicon solar cells
,”
Sol. Energy
151
,
163
172
(
2017
).
27.
R.
Padma
and
V. R.
Reddy
, “
Determination of the characteristic parameters of Au/PVDF/n-InP Schottky structure from current-voltage and capacitance-voltage measurements
,”
AIP Conf. Proc.
1665
(
1
),
120033
(
2015
).
28.
I.
Kumar
,
A.
Kumar
, and
A. K.
Gathania
, “
Activation of zirconia nanophosphors with Eu3+ to demonstrate multifunctional optical applications
,”
Mater. Chem. Phys.
292
,
126846
(
2022
).
29.
P.
Juan
,
C.
Liu
,
C.
Lin
,
S.
Ju
,
M.
Chen
,
I. Y.
Chang
, and
J.
Lu
, “
Electrical characterization and dielectric properties of metal-oxide-semiconductor structures using high-k CeZrO4 ternary oxide as gate dielectric
,”
Jpn. J. Appl. Phys., Part 1
48
(
5S1
),
05DA02
(
2009
).
30.
L. M.
Ud Din
and
V.
Kumar
, “
Oxygen-deficient low band gap black zirconia nanoparticle synthesis and tailoring its band gap/photoluminescence via silver doping
,”
Physica B
652
,
414626
(
2023
).
31.
H.
Wang
,
D.
Yong
,
S.
Chen
,
S.
Jiang
,
X.
Zhang
,
W.
Shao
,
Q.
Zhang
,
W.
Yan
,
B.
Pan
, and
Y.
Xie
, “
Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation
,”
J. Am. Chem. Soc.
140
(
5
),
1760
1766
(
2018
).
32.
M.
Gerosa
,
C. E.
Bottani
,
L.
Caramella
,
G.
Onida
,
C.
Di Valentin
, and
G.
Pacchioni
, “
Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: The case of oxygen vacancies in metal oxides
,”
J. Chem. Phys.
143
(
13
),
134702
(
2015
).
33.
J. K.
Mbae
and
Z. W.
Muthui
, “
Doping induced phase stabilization and electronic properties of alkaline earth metal doped zirconium (IV) oxide: A first principles study
,”
Heliyon
9
(
10
),
e20998
(
2023
).
34.
J. C.
Garcia
,
L. M. R.
Scolfaro
,
A. T.
Lino
,
V. N.
Freire
,
G. A.
Farias
,
C. C.
Silva
,
H. W. L.
Alves
,
S. C. P.
Rodrigues
, and
E. F.
Da Silva
, “
Structural, electronic, and optical properties of ZrO2 from ab initio calculations
,”
J. Appl. Phys.
100
(
10
),
104103
(
2006
).
35.
H.
Mehmood
,
H.
Nasser
,
T.
Tauqeer
, and
R.
Turan
, “
Simulation of silicon heterostructure solar cell featuring dopant-free carrier-selective molybdenum oxide and titanium oxide contacts
,”
Renewable Energy
143
,
359
367
(
2019
).
36.
S.
Peng
,
J.
Ma
,
P.
Li
,
S.
Zang
,
Y.
Zhang
, and
Y.
Song
, “
Regulation of quantum wells width distribution in 2D perovskite films for photovoltaic application
,”
Adv. Funct. Mater.
32
(
43
),
2205289
(
2022
).
You do not currently have access to this content.