SU(1,1) interferometers use two active parametric amplifiers to replace passive beam splitters of traditional interferometers for wave splitting and superposition. These interferometers involve quantum entangled signal and idler fields and possess a number of advantages over traditional interferometers. Here, we investigate a variant of the SU(1,1) interferometer by using only one parametric amplifier but with either one or both of the signal and idler fields fed back to the same parametric amplifier. Such a geometry is used to accommodate an on-chip micro-ring optical parametric oscillator made of high-index silica glass. An interference fringe is observed, and quantum noise reduction of 4-dB due to destructive quantum interference is measured in the output off the chip. Such an integrated device has potential applications in on-chip precision phase sensing.

1.
B.
Yurke
,
S. L.
McCall
, and
J. R.
Klauder
, “
SU(2) and SU(1,1) interferometers
,”
Phys. Rev. A
33
,
4033
(
1986
).
2.
J.
Jing
,
C.
Liu
,
Z.
Zhou
,
Z. Y.
Ou
, and
W.
Zhang
, “
Realization of a nonlinear interferometer with parametric amplifiers
,”
Appl. Phys. Lett.
99
,
011110
(
2011
).
3.
F.
Hudelist
,
J.
Kong
,
C.
Liu
,
J.
Jing
,
Z. Y.
Ou
, and
W.
Zhang
, “
Quantum metrology with parametric amplifier-based photon correlation interferometers
,”
Nat. Commun.
5
,
3049
(
2014
).
4.
Z. Y.
Ou
and
X.
Li
, “
Quantum SU (1, 1) interferometers: Basic principles and applications
,”
APL Photonics
5
,
080902
(
2020
).
5.
J. E.
Sharping
,
K. F.
Lee
,
M. A.
Foster
,
A. C.
Turner
,
B. S.
Schmidt
,
M.
Lipson
,
A. L.
Gaeta
, and
P.
Kumar
, “
Generation of correlated photons in nanoscale silicon waveguides
,”
Opt. Express
14
,
12388
(
2006
).
6.
H.
Takesue
,
H.
Fukuda
,
T.
Tsuchizawa
,
T.
Watanabe
,
K.
Yamada
,
Y.
Tokura
, and
S.
Itabashi
, “
Generation of polarization entangled photon pairs using silicon wire waveguide
,”
Opt. Express
16
,
5721
(
2008
).
7.
S.
Clemmen
,
K. P.
Huy
,
W.
Bogaerts
,
R. G.
Baets
,
P.
Emplit
, and
S.
Massar
, “
Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators
,”
Opt. Express
17
,
16558
(
2009
).
8.
S.
Azzini
,
D.
Grassani
,
M. J.
Strain
,
M.
Sorel
,
L. G.
Helt
,
J.
Sipe
,
M.
Liscidini
,
M.
Galli
, and
D.
Bajoni
, “
Ultra-low power generation of twin photons in a compact silicon ring resonator
,”
Opt. Express
20
,
23100
(
2012
).
9.
C.
Reimer
,
M.
Kues
,
P.
Roztocki
,
B.
Wetzel
,
F.
Grazioso
,
B. E.
Little
,
S. T.
Chu
,
T.
Johnston
,
Y.
Bromberg
,
L.
Caspani
et al, “
Generation of multiphoton entangled quantum states by means of integrated frequency combs
,”
Science
351
,
1176
(
2016
).
10.
M.
Kues
,
C.
Reimer
,
P.
Roztocki
,
L. R.
Cortés
,
S.
Sciara
,
B.
Wetzel
,
Y.
Zhang
,
A.
Cino
,
S. T.
Chu
,
B. E.
Little
et al, “
On-chip generation of high-dimensional entangled quantum states and their coherent control
,”
Nature
546
,
622
(
2017
).
11.
Y.
Zhao
,
Y.
Okawachi
,
J. K.
Jang
,
X.
Ji
,
M.
Lipson
, and
A. L.
Gaeta
, “
Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip
,”
Phys. Rev. Lett.
124
,
193601
(
2020
).
12.
Y.
Zhang
,
M.
Menotti
,
K.
Tan
,
V.
Vaidya
,
D.
Mahler
,
L.
Helt
,
L.
Zatti
,
M.
Liscidini
,
B.
Morrison
, and
Z.
Vernon
, “
Squeezed light from a nanophotonic molecule
,”
Nat. Commun.
12
,
2233
(
2021
).
13.
V. D.
Vaidya
,
B.
Morrison
,
L.
Helt
,
R.
Shahrokshahi
,
D.
Mahler
,
M.
Collins
,
K.
Tan
,
J.
Lavoie
,
A.
Repingon
,
M.
Menotti
et al, “
Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device
,”
Sci. Adv.
6
,
eaba9186
(
2020
).
14.
Z.
Yang
,
M.
Jahanbozorgi
,
D.
Jeong
,
S.
Sun
,
O.
Pfister
,
H.
Lee
, and
X.
Yi
, “
A squeezed quantum microcomb on a chip
,”
Nat. Commun.
12
,
4781
(
2021
).
15.
P.-K.
Chen
,
I.
Briggs
,
S.
Hou
, and
L.
Fan
, “
Ultra-broadband quadrature squeezing with thin-film lithium niobate nanophotonics
,”
Opt. Lett.
47
,
1506
(
2022
).
16.
T.
Park
,
H.
Stokowski
,
V.
Ansari
,
S.
Gyger
,
K. K.
Multani
,
O. T.
Celik
,
A. Y.
Hwang
,
D. J.
Dean
,
F.
Mayor
,
T. P.
McKenna
et al, “
Single-mode squeezed-light generation and tomography with an integrated optical parametric oscillator
,”
Sci. Adv.
10
,
eadl1814
(
2024
).
17.
Z. Y.
Ou
, “
Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer
,”
Phys. Rev. A
85
,
023815
(
2012
).
18.
M.
Manceau
,
G.
Leuchs
,
F.
Khalili
, and
M.
Chekhova
, “
Detection loss tolerant supersensitive phase measurement with an SU(1,1) interferometer
,”
Phys. Rev. Lett.
119
,
223604
(
2017
).
19.
J.
Li
,
Y.
Liu
,
N.
Huo
,
L.
Cui
,
C.
Feng
,
Z. Y.
Ou
, and
X.
Li
, “
Pulsed entanglement measured by parametric amplifier assisted homodyne detection
,”
Opt. Express
27
,
30552
(
2019
).
20.
J.
Kong
,
F.
Hudelist
,
Z. Y.
Ou
, and
W.
Zhang
, “
Cancellation of internal quantum noise of an amplifier by quantum correlation
,”
Phys. Rev. Lett.
111
,
033608
(
2013
).
21.
Z. Y.
Ou
,
S. F.
Pereira
, and
H. J.
Kimble
, “
Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification
,”
Appl. Phys. B
55
,
265
(
1992
).
22.
X.
Zhu
,
X.
Wang
,
Y.
Huang
,
L.
Wu
,
C.
Zhao
,
M.
Xiao
,
L.
Wang
,
R.
Davidson
,
Y.
Ou
,
B. E.
Little
et al, “
Low-loss and polarization insensitive 32 × 4 optical switch for ROADM applications
,”
Light Sci. Appl.
13
,
94
(
2024
).
23.
M.
Ferrera
,
L.
Razzari
,
D.
Duchesne
,
R.
Morandotti
,
Z.
Yang
,
M.
Liscidini
,
J.
Sipe
,
S.
Chu
,
B. E.
Little
, and
D. J.
Moss
, “
Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures
,”
Nat. Photonics
2
,
737
(
2008
).
24.
L.
Razzari
,
D.
Duchesne
,
M.
Ferrera
,
R.
Morandotti
,
S.
Chu
,
B. E.
Little
, and
D. J.
Moss
, “
CMOS-compatible integrated optical hyper-parametric oscillator
,”
Nat. Photonics
4
,
41
(
2010
).
You do not currently have access to this content.