Microelectromechanical system (MEMS) resonators are versatile and miniaturized devices capable of resonating at specific frequencies for numerous technological applications. Quality (Q) factor and frequency stability are two critical parameters that determine the performance of MEMS resonators. A higher Q-factor typically translates to narrower resonance peaks, leading to improved sensitivity in sensing applications. Frequency stability, on the contrary, refers to the ability of a resonator to maintain its operating frequency over time and under varying environmental conditions. We explore in this study the feasibility of improving the linewidth and the frequency stability of a microcantilever resonator through resonant excitation. We discover that parametric excitation enables mode coupling between its first torsional mode, ft, and the second flexural mode, f2, and generates two resolved sidebands. The sidebands exhibit narrow linewidths and improved frequency stability over the two original modes, with tunable frequency capacity that can be achieved by adjusting the excitation voltage. This approach offers a versatile method for the design of highly stable MEMS resonators in practical applications.

1.
M.
Agarwal
,
H.
Mehta
,
R. N.
Candler
,
S. A.
Chandorkar
,
B.
Kim
,
M. A.
Hopcroft
,
R.
Melamud
,
G.
Bahl
,
G.
Yama
,
T. W.
Kenny
, and
B.
Murmann
, “
Scaling of amplitude-frequency-dependence nonlinearities in electrostatically transduced microresonators
,”
J. Appl. Phys.
102
,
074903
(
2007
).
2.
M. L.
Guo
,
J. W.
Fang
,
J. F.
Chen
,
B.-L.
Li
,
H.
Chen
,
Q.
Zhou
,
Y.
Wang
,
H.-Z.
Song
,
K.
Yu. Arutyunov
,
G. C.
Guo
,
Z. M.
Wang
, and
G. W.
Deng
, “
Mode coupling in electromechanical systems: Recent advances and applications
,”
Adv. Electron. Mater.
9
,
2201305
(
2023
).
3.
J.
Vanier
, “
The measurement of time: Time, frequency and the atomic clock
,”
Phys. Today
56
(
1
),
48
(
2003
).
4.
C. T.-c.
Nguyen
, “
MEMS technology for timing and frequency control
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
251
(
2007
).
5.
S.
Strogatz
, “
Synchronization: A universal concept in nonlinear sciences
,”
Phys. Today
56
(
1
),
47
(
2003
).
6.
G.
Anetsberger
,
R.
Rivière
,
A.
Schliesser
,
O.
Arcizet
, and
T. J.
Kippenberg
, “
Ultralow-dissipation optomechanical resonators on a chip
,”
Nat. Photonics
2
,
627
(
2008
).
7.
S. K.
Roy
,
V. T. K.
Sauer
,
J. N.
Westwood-Bachman
,
A.
Venkatasubramanian
, and
W. K.
Hiebert
, “
Improving mechanical sensor performance through larger damping
,”
Science
360
,
eaar5220
(
2018
).
8.
X.
Wang
,
R.
Huan
,
W.
Zhu
,
D.
Pu
, and
X.
Wei
, “
Frequency locking in the internal resonance of two electrostatically coupled micro-resonators with frequency ratio 1:3
,”
Mech. Syst. Signal. Process.
146
,
106981
(
2021
).
9.
H. K.
Lee
,
P. A.
Ward
,
A. E.
Duwel
,
J. C.
Salvia
,
Y. Q.
Qu
,
R.
Melamud
,
S. A.
Chandorkar
,
M. A.
Hopcroft
,
B.
Kim
, and
T. W.
Kenny
, “
Verification of the phase-noise model for MEMS oscillators operating in the nonlinear regime
,” in
16th Int. Solid-State Sens., Actuators Microsystems Conf.
, Vol.
510
(
2011
).
10.
P.
Ward
and
A.
Duwel
, “
Oscillator phase noise: Systematic construction of an analytical model encompassing nonlinearity
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
195
(
2011
).
11.
A. N.
Cleland
and
M. L.
Roukes
, “
Noise processes in nanomechanical resonators
,”
J. Appl. Phys.
92
,
2758
(
2002
).
12.
D.
Antonio
,
D. H.
Zanette
, and
D.
López
, “
Frequency stabilization in nonlinear micromechanical oscillators
,”
Nat. Commun.
3
,
806
(
2012
).
13.
W. J.
Venstra
,
H. J. R.
Westra
, and
H. S. J.
Van Der Zant
, “
Q-factor control of a microcantilever by mechanical sideband excitation
,”
Appl. Phys. Lett.
99
,
151904
(
2011
).
14.
H. J. R.
Westra
,
H. S. J.
Van Der Zant
, and
W. J.
Venstra
, “
Modal interactions of flexural and torsional vibrations in a microcantilever
,”
Ultramicroscopy
120
,
41
(
2012
).
15.
X.
Xia
,
Z.
Zhang
, and
X.
Li
, “
A Latin-cross-shaped integrated resonant cantilever with second torsion-mode resonance for ultra-resoluble bio-mass sensing
,”
J. Micromech. Microeng.
18
,
035028
(
2008
).
16.
H.
Okamoto
,
A.
Gourgout
,
C. Y.
Chang
,
K.
Onomitsu
,
I.
Mahboob
,
E. Y.
Chang
, and
H.
Yamaguchi
, “
Coherent phonon manipulation in coupled mechanical resonators
,”
Nat. Phys.
9
,
480
(
2013
).
17.
J. D.
Teufel
,
D.
Li
,
M. S.
Allman
,
K.
Cicak
,
A. J.
Sirois
,
J. D.
Whittaker
, and
R. W.
Simmonds
, “
Circuit cavity electromechanics in the strong-coupling regime
,”
Nature
471
,
204
(
2011
).
18.
Y.
Li
,
W.
Luo
,
Z.
Zhao
, and
D.
Liu
, “
Resonant excitation-induced nonlinear mode coupling in a microcantilever resonator
,”
Phys. Rev. Appl.
17
,
054015
(
2022
).
19.
Z.
Zhao
,
Y.
Li
,
W.
Zhang
,
W.
Luo
, and
D.
Liu
, “
Acoustic frequency comb generation on a composite diamond/silicon microcantilever in ambient air
,”
Microsyst. Nanoeng.
11
,
12
(
2025
).
20.
M.
McKibben
,
Differential Equations with MATLAB
, 1st ed. (
Chapman and Hall/CRC
,
New York
,
2014
).
21.
J. R.
Dormand
and
P. J.
Prince
, “
A family of embedded Runge-Kutta formulae
,”
J. Comput. Appl. Math.
6
,
19
(
1980
).
22.
A. H.
Nayfeh
,
Nonlinear Oscillations
(
Wiley-VCH
,
Germany
,
1995
).
23.
Y. Z.
Liu
,
Nonlinear Vibration
, 2nd ed. (
Higher Education Press
,
2024
).
24.
H. A.
Baquero
, “
Analysis and modeling of Fano resonances in coupled cantilevers
,”
J. Phys. Conf. Ser.
1730
,
012135
(
2021
).
25.
A. E.
Miroshnichenko
,
S.
Flach
, and
Y. S.
Kivshar
, “
Fano resonances in nanoscale structures
,”
Rev. Mod. Phys.
82
,
2257
(
2010
).
26.
Z.
Liu
,
Y.
Chen
,
X.
Wang
,
Y.
Xu
,
H.
Dai
,
Z.
Shi
,
H.
Wan
,
X.
Wei
, and
R.
Huan
, “
Nonlinearity enhanced mode localization in two coupled MEMS resonators
,”
Int. J. Mech. Sci.
271
,
109133
(
2024
).
27.
D. W.
Allan
, “
Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators
,”
IEEE Trans. Ultrason. Ferroelec. Freq. Control
34
,
647
(
1987
).
28.
D. W.
Allan
, “
Statistics of atomic frequency standards
,”
Proc. IEEE
54
,
221
(
1966
).
You do not currently have access to this content.