The Rashba effect in Janus structures, accompanied by nontrivial topology, plays an important role in spintronics and even photovoltaic applications. Herein, through first-principles calculations, we systematically investigate the geometric stability and electronic structures of 135 kinds of Janus MAA'ZxZ'(4−x) family derived from two-dimensional MA2Z4 (M = Mg, Ga, Sr; A = Al, Ga; Z = S, Se, Te) monolayers and design numerous Rashba semiconductors and inversion-asymmetric topological insulators. Specifically, there are a total of 26 Rashba semiconductors with isolated spin-splitting bands contributed by Se/Te-pz orbitals at conduction band minimum, and the magnitude of the Rashba constant correlates strongly with both the intrinsic electric field and the strength of spin–orbit coupling (SOC). As the atomic number increases, the bandgap of Janus MAA'ZxZ'(4−x) continually decreases until it shrinks to a point where, when SOC is considered, band inversion occurs, leading to a reopening of the bandgap with nontrivial topological phases. In conjunction with band inversion, pz orbitals near the Fermi level can introduce double Rashba splitting featuring a distinctive hybrid spin texture, which can be further effectively adjusted through small biaxial strains and show a continuous evolution from topological to non-topological accompanied by different spin textures. This work provides significant insights into Rashba and topology physics and further presents indispensable inversion-asymmetry materials for the development of nonlinear optoelectronics.

1.
Ž.
Igor
,
F.
Jaroslav
, and
S. S.
Das
, “
Spintronics: Fundamentals and applications
,”
Rev. Mod. Phys.
76
,
323
(
2004
).
2.
M. M. H.
Polash
,
A. I.
Smirnov
, and
D.
Vashaee
, “
Electron spin resonance in emerging spin-driven applications: Fundamentals and future perspectives
,”
Appl. Phys. Rev.
10
,
041301
(
2023
).
3.
E.
Rashba
, “
Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop
,”
Sov. Phys.-Solid State
2
,
1190
(
1960
).
4.
R.
Zhang
,
A.
Marrazzo
,
M. J.
Verstraete
et al, “
Gate control of spin-layer-locking FETs and application to monolayer LuIO
,”
Nano Lett.
21
,
7631
(
2021
).
5.
S.
Datta
and
B.
Das
, “
Electronic analog of the electro-optic modulator
,”
Appl. Phys. Lett.
56
,
665
(
1990
).
6.
Q.
Tian
,
P.
Li
,
J.
Wei
et al, “
Inverse Janus design of two-dimensional Rashba semiconductors
,”
Phys. Rev. B
108
,
115130
(
2023
).
7.
J.
Sinova
,
D.
Culcer
,
Q.
Niu
et al, “
Universal intrinsic spin Hall effect
,”
Phys. Rev. Lett
92
,
126603
(
2004
).
8.
I.
Mihai Miron
,
G.
Gaudin
,
S.
Auffret
et al, “
Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer
,”
Nat. Mater.
9
,
230
(
2010
).
9.
Q.
Zhang
,
K.
Tao
,
C.
Jia
et al, “
Large unidirectional spin Hall magnetoresistance in FeNi/Pt/Bi2Se3 trilayers by Pt interfacial engineering
,”
Nat. Commun.
15
,
9450
(
2024
).
10.
M. N. R.
Perez
,
R. A. B.
Villaos
,
L.-Y.
Feng
et al, “
Quantum spin Hall insulating phase and van Hove singularities in Zintl single-quintuple-layer AM2X2 (A = Ca, Sr, or Ba; M = Zn or Cd; X = Sb or Bi) family
,”
Appl. Phys. Rev.
9
,
011410
(
2022
).
11.
Y. A.
Bychkov
and
E. I.
Rashba
, “
Properties of a 2D electron gas with lifted spectral degeneracy
,”
JETP Lett.
39
,
78
(
1984
).
12.
G.
Bihlmayer
,
P.
Noël
,
D. V.
Vyalikh
et al, “
Rashba-like physics in condensed matter
,”
Nat. Rev. Phys.
4
,
642
(
2022
).
13.
V.
Sunko
,
H.
Rosner
,
P.
Kushwaha
et al, “
Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking
,”
Nature
549
,
492
(
2017
).
14.
S.
Gupta
and
B. I.
Yakobson
, “
What dictates Rashba splitting in 2D van der Waals heterobilayers
,”
J. Am. Chem. Soc
143
,
3503
(
2021
).
15.
Z.
Qin
,
G.
Qin
,
B.
Shao
et al, “
Rashba spin splitting and perpendicular magnetic anisotropy of Gd-adsorbed zigzag graphene nanoribbon modulated by edge states under external electric fields
,”
Phys. Rev. B
101
,
014451
(
2020
).
16.
Q.
Tian
,
W.
Zhang
,
Z.
Qin
et al, “
Novel optimization perspectives for thermoelectric properties based on Rashba spin splitting: A mini review
,”
Nanoscale
13
,
18032
(
2021
).
17.
Y.-L.
Hong
,
Z.
Liu
,
L.
Wang
et al, “
Chemical vapor deposition of layered two-dimensional MoSi2N4 materials
,”
Science
369
,
670
(
2020
).
18.
L.
Wang
,
Y.
Shi
,
M.
Liu
et al, “
Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties
,”
Nat. Commun.
12
,
2361
(
2021
).
19.
P.
Li
,
X.
Wang
,
H.
Wang
et al, “
Biaxial strain modulated electronic structures of layered two-dimensional MoSiGeN4 Rashba systems
,”
Phys. Chem. Chem. Phys.
26
,
1891
(
2024
).
20.
J.
D'Souza
,
I. M. R.
Verzola
,
S. P.
C
et al, “
Quantum spin Hall insulating phase in two-dimensional MA2Z4 materials: SrTl2Te4 and BaTl2Te4
,”
Appl. Phys. Lett.
124
,
233102
(
2024
).
21.
C. C.
Tho
,
C.
Yu
,
Q.
Tang
et al, “
Cataloguing MoSi2N4 and WSi2N4 van der Waals heterostructures: An exceptional material platform for excitonic solar cell applications
,”
Adv. Mater. Interfaces
10
,
2201856
(
2023
).
22.
W.
Fang
,
K.
Kuang
,
X.
Xiao
et al, “
Ab initio study of two-dimensional MgAl2Se4 and MgIn2Se4 with high stability, high electron mobility, and high thermoelectric figure of merit
,”
J. Alloys Compd.
931
,
167586
(
2023
).
23.
P.
Wu
,
X.
Niu
, and
J.
Wang
, “
Ferroelectricity in two-dimensional bilayers and multilayers of MgAl2S4
,”
Surf. Interfaces
48
,
104330
(
2024
).
24.
L.
Shi
,
C.
Lv
,
H.
Wei
et al, “
High mobility and excellent thermoelectric performance monolayer ZnX2Z4 (X = In, Al, Ga; Z = S, Se, Te) materials
,”
Phys. Chem. Chem. Phys.
25
,
10335
(
2023
).
25.
L.
Yu
,
K.
Dong
,
Q.
Yang
et al, “
Revealing the correlation between asymmetric structure and low thermal conductivity in Janus-graphene via machine learning force constant potential
,”
Appl. Phys. Lett.
125
,
213101
(
2024
).
26.
D.
Wei
,
E.
Zhou
,
J.
Xu
et al, “
Asymmetrical regulation of thermal transport in BAs/MoSSe van der Waals heterostructures with applied electric field
,”
Phys. Rev. B
109
,
205408
(
2024
).
27.
B.
Wu
,
X.
Zhao
,
M.
Jia
et al, “
Synergistic effects of interstitial and substitutional doping on the thermoelectric properties of PbS
,”
Appl. Phys. Lett.
125
,
223901
(
2024
).
28.
J.
Chen
,
K.
Wu
,
H.
Ma
et al, “
Tunable Rashba spin splitting in Janus transition-metal dichalcogenide monolayers via charge doping
,”
RSC Adv.
10
,
6388
(
2020
).
29.
Q.
Peng
,
Y.
Lei
,
X.
Deng
et al, “
Giant and tunable Rashba spin splitting in MoS2/Bi2Te3 heterostructures
,”
Physica E
135
,
114944
(
2022
).
30.
L.
Yu
,
J.
Xu
,
C.
Shen
et al, “
Janus graphene: A two-dimensional half-auxetic carbon allotrope with a nonchemical Janus configuration
,”
Phys. Rev. B
109
,
L121402
(
2024
).
31.
M.
Li
,
H.-W.
Lu
,
S.-W.
Wang
et al, “
Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators
,”
Nat. Commun.
13
,
938
(
2022
).
32.
A.
Strasser
,
H.
Wang
, and
X.
Qian
, “
Nonlinear optical and photocurrent responses in Janus MoSSe monolayer and MoS2–MoSSe van der Waals heterostructure
,”
Nano Lett.
22
,
4145
(
2022
).
33.
Y.
Zhou
,
D.
Wu
,
Y.
Zhu
et al, “
Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes
,”
Nano Lett.
17
,
5508
(
2017
).
34.
Z.
Liao
,
M.
Brahlek
,
J. M.
Ok
et al, “
Pulsed-laser epitaxy of topological insulator Bi2Te3 thin films
,”
APL Mater.
7
,
041101
(
2019
).
35.
Y. L.
Chen
,
M.
Kanou
,
Z. K.
Liu
et al, “
Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl
,”
Nat. Phys.
9
,
704
(
2013
).
36.
H.
Xu
,
H.
Wang
,
J.
Zhou
et al, “
Colossal switchable photocurrents in topological Janus transition metal dichalcogenides
,”
npj Comput. Mater.
7
,
31
(
2021
).
37.
A. M.
Cook
,
B. M.
Fregoso
,
F.
De Juan
et al, “
Design principles for shift current photovoltaics
,”
Nat. Commun.
8
,
14176
(
2017
).
38.
N. T.
Kaner
,
Y.
Wei
,
T.
Ying
et al, “
Giant shift photovoltaic current in group V‐V binary nanosheets
,”
Adv. Theory Simul.
5
,
2100472
(
2022
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
40.
M.
Gupta
and
B. R. K.
Nanda
, “
Spin texture as polarization fingerprint of halide perovskites
,”
Phys. Rev. B
105
,
035129
(
2022
).
41.
S. V.
Eremeev
,
I. A.
Nechaev
,
Y. M.
Koroteev
et al, “
Ideal two-dimensional electron systems with a giant Rashba-type spin splitting in real materials: Surfaces of bismuth tellurohalides
,”
Phys. Rev. Lett.
108
,
246802
(
2012
).
42.
L.
Zullo
,
D.
Ninno
, and
G.
Cantele
, “
Twist-tunable spin control in twisted bilayer bismuthene
,”
Phys. Rev. B
110
,
165411
(
2024
).
43.
H.
Yang
,
B.
Martín-García
,
J.
Kimák
et al, “
Twist-angle-tunable spin texture in WSe2/graphene van der Waals heterostructures
,”
Nat. Mater.
23
,
1502
1508
(
2024
).
44.
J.
Zhu
,
B.
Fu
,
H.
Zhao
et al, “
Theoretical design of monoelemental ferroelectricity with tunable spin textures in bilayer tellurium
,”
Phys. Rev. B
110
,
125434
(
2024
).
45.
K.
Wu
,
J.
Chen
,
H.
Ma
et al, “
Two-dimensional giant tunable Rashba semiconductors with two-atom-thick buckled honeycomb structure
,”
Nano Lett.
21
,
740
(
2021
).
46.
M. K.
Mohanta
,
A.
Arora
, and
A.
De Sarkar
, “
Conflux of tunable Rashba effect and piezoelectricity in flexible magnesium monochalcogenide monolayers for next-generation spintronic devices
,”
Nanoscale
13
,
8210
(
2021
).
You do not currently have access to this content.