The regulation of tunneling electroresistance (TER) in two-dimensional (2D) ferroelectric tunnel junctions (FTJs) is crucial for their practical applications. In this Letter, we introduce an innovative approach to manipulate TER by altering the interfacial contact barrier through polarization-induced modifications in interface transport properties. A comprehensive analysis of the electronic structures within heterostructures, consisting of a metallic TaSe2 monolayer and a ferroelectric Sc2CO2 layer, uncovers a dual modulation effect of ferroelectricity on both the Schottky barrier height and the interfacial tunneling barrier. This phenomenon substantiates the influence of polarization on charge carrier transport across the interface. Through calculations employing the non-equilibrium Green's function method, we reveal a significant TER ratio (2.41×1013%) in TaSe2/Sc2CO2-based FTJs. Our findings illustrate that distinct tunneling resistance states can be achieved through polarization reversal, as predicted by the proposed mechanism. These insights enhance the understanding of polarization-mediated TER in 2D FTJs and provide a foundation for the design of next-generation electronic devices leveraging 2D ferroelectric materials.

1.
E. Y.
Tsymbal
and
H.
Kohlstedt
,
Science
313
,
181
(
2006
).
2.
V.
Garcia
and
M.
Bibes
,
Nat. Commun.
5
,
4289
(
2014
).
3.
H.
Lu
,
A.
Lipatov
,
S.
Ryu
,
D.
Kim
,
H.
Lee
,
M. Y.
Zhuravlev
,
C. B.
Eom
,
E. Y.
Tsymbal
,
A.
Sinitskii
, and
A.
Gruverman
,
Nat. Commun.
5
,
5518
(
2014
).
4.
Z. N.
Xi
,
J. J.
Ruan
,
C.
Li
,
C. Y.
Zheng
,
Z.
Wen
,
J. Y.
Dai
,
A. D.
Li
, and
D.
Wu
,
Nat. Commun.
8
,
15217
(
2017
).
5.
R.
Berdan
,
T.
Marukame
,
K.
Ota
,
M.
Yamaguchi
,
M.
Saitoh
,
S.
Fujii
,
J.
Deguchi
, and
Y.
Nishi
,
Nat. Electron.
3
,
259
(
2020
).
6.
X.
Liu
,
J. D.
Burton
, and
E. Y.
Tsymbal
,
Phys. Rev. Lett.
116
,
197602
(
2016
).
7.
J. P.
Velev
,
J. D.
Burton
,
M. Y.
Zhuravlev
, and
E. Y.
Tsymbal
,
npj Comput. Mater.
2
,
16009
(
2016
).
8.
D.
Pantel
,
H.
Lu
,
S.
Goetze
,
P.
Werner
,
D. J.
Kim
,
A.
Gruverman
,
D.
Hesse
, and
M.
Alexe
,
Appl. Phys. Lett.
100
,
232902
(
2012
).
9.
Q.
Wu
,
L.
Shen
,
M.
Yang
,
J.
Zhou
,
J.
Chen
, and
Y. P.
Feng
,
Phys. Rev. B
94
,
155420
(
2016
).
10.
Q.
Yang
,
L.
Tao
,
Y.
Zhang
,
M.
Li
,
Z.
Jiang
,
E. Y.
Tsymbal
, and
V.
Alexandrov
,
Nano Lett.
19
,
7385
(
2019
).
11.
Y.
Kim
,
D.
Kim
,
J.
Kim
,
Y.
Chang
,
T.
Noh
,
J.
Kong
,
K.
Char
,
Y.
Park
,
S.
Bu
,
J.
Yoon
, and
J.
Chung
,
Appl. Phys. Lett.
86
,
102907
(
2005
).
12.
F.
Liu
,
L.
You
,
K. L.
Seyler
,
X.
Li
,
P.
Yu
,
J.
Lin
,
X.
Wang
,
J.
Zhou
,
H.
Wang
,
H.
He
,
S. T.
Pantelides
,
W.
Zhou
,
P.
Sharma
,
X.
Xu
,
P. M.
Ajayan
,
J.
Wang
, and
Z.
Liu
,
Nat. Commun.
7
,
12357
(
2016
).
13.
J.
Qi
,
H.
Han
,
S.
Yang
,
L.
Kang
,
H.
Yin
, and
G.
Zhao
,
Appl. Phys. Lett.
125
,
042903
(
2024
).
14.
Z.
Fei
,
W.
Zhao
,
T. A.
Palomaki
,
B.
Sun
,
M. K.
Miller
,
Z.
Zhao
,
J.
Yan
,
X.
Xu
, and
D. H.
Cobden
,
Nature
560
,
336
(
2018
).
15.
A.
Chandrasekaran
,
A.
Mishra
, and
A. K.
Singh
,
Nano Lett.
17
,
3290
(
2017
).
16.
W.
Ding
,
J.
Zhu
,
Z.
Wang
,
Y.
Gao
,
D.
Xiao
,
Y.
Gu
,
Z.
Zhang
, and
W.
Zhu
,
Nat. Commun.
8
,
14956
(
2017
).
17.
C.
Zheng
,
L.
Yu
,
J. L.
Collins
,
D.
Kim
,
Y.
Lou
,
C.
Xu
,
M.
Li
,
Z.
Wei
,
Y.
Zhang
,
M. T.
Edmonds
,
S.
Li
,
Y.
Zhu
,
J. Z.
Liu
,
W.-X.
Tang
, and
M. S.
Fuhrer
,
Sci. Adv.
4
,
eaar7720
(
2018
).
18.
C.
Kim
,
I.
Moon
,
D.
Lee
,
M. S.
Choi
,
F.
Ahmed
,
S.
Nam
,
Y.
Cho
,
H. J.
Shin
,
S.
Park
, and
W. J.
Yoo
,
ACS Nano
11
,
1588
(
2017
).
19.
I.
Popov
,
G.
Seifert
, and
D.
Tomanek
,
Phys. Rev. Lett.
108
,
156802
(
2012
).
20.
Y.
Liu
,
J.
Guo
,
E.
Zhu
,
L.
Liao
,
S. J.
Lee
,
M.
Ding
,
I.
Shakir
,
V.
Gambin
,
Y.
Huang
, and
X.
Duan
,
Nature
557
,
696
(
2018
).
21.
L.
Kang
,
P.
Jiang
,
H.
Hao
,
Y.
Zhou
,
X.
Zheng
,
L.
Zhang
, and
Z.
Zeng
,
Phys. Rev. B
101
,
014105
(
2020
).
22.
G.
Liu
,
Z.
Xu
,
X.
Xiao
, and
S.-H.
Ke
,
Phys. Rev. B
109
,
155418
(
2024
).
23.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
24.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
25.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
26.
P. E.
Blöchl
,
O.
Jepsen
, and
O.
Andersen
,
Phys. Rev. B
50
,
17953
(
1994
).
27.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
28.
O. A.
Vydrov
,
J.
Heyd
,
A. V.
Krukau
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
074106
(
2006
).
29.
30.
J.
Taylor
,
H.
Guo
, and
J.
Wang
,
Phys. Rev. B
63
,
245407
(
2001
).
31.
R.
Soni
,
A.
Petraru
,
P.
Meuffels
,
O.
Vavra
,
M.
Ziegler
,
S. K.
Kim
,
D. S.
Jeong
,
N. A.
Pertsev
, and
H.
Kohlstedt
,
Nat. Commun.
5
,
5414
(
2014
).
32.
M. Y.
Zhuravlev
,
R. F.
Sabirianov
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Phys. Rev. Lett.
94
,
246802
(
2005
).
33.
Z.
Wen
,
C.
Li
,
D.
Wu
,
A.
Li
, and
N.
Ming
,
Nat. Mater.
12
,
617
(
2013
).
34.
M. A.
Khan
,
Y.
Itokazu
,
N.
Maeda
,
M.
Jo
,
Y.
Yamada
, and
H.
Hirayama
,
ACS Appl. Electron. Mater.
2
,
1892
(
2020
).
35.
J. G.
Simmons
,
J. Appl. Phys.
34
,
1793
(
1963
).
36.
S.
He
,
D.
Zou
,
C.
Lei
,
Z.
He
, and
Y.
Liu
,
J. Phys: Condens. Matter
36
,
505502
(
2024
).
37.
Z.
Liu
,
P.
Hou
,
L.
Sun
,
E. Y.
Tsymbal
,
J.
Jiang
, and
Q.
Yang
,
npj Comput. Mater.
9
,
6
(
2023
).
38.
A.
Xie
,
H.
Hao
,
C.
Liu
,
X.
Zheng
,
L.
Zhang
, and
Z.
Zeng
,
Phys. Rev. B
107
,
115427
(
2023
).
39.
L.
Kang
,
P.
Jiang
,
H.
Hao
,
Y.
Zhou
,
X.
Zheng
,
L.
Zhang
, and
Z.
Zeng
,
Phys. Rev. B
103
,
125414
(
2021
).
40.
Z.
Yan
,
Z.
Li
,
Y.
Han
,
Z.
Qiao
, and
X.
Xu
,
Phys. Rev. B
105
,
075423
(
2022
).
41.
X.
Zhang
,
B.
Liu
,
J.
Huang
,
X.
Cao
,
Y.
Zhang
, and
Z.-X.
Guo
,
Phys. Rev. B
109
,
205105
(
2024
).
42.
J.
Yuan
,
J.-Q.
Dai
,
Y.-Z.
Liu
, and
M.-W.
Zhao
,
Surf. Interfaces
46
,
103977
(
2024
).
43.
C.
Huang
,
Y.
Du
,
H.
Wu
,
H.
Xiang
,
K.
Deng
, and
E.
Kan
,
Phys. Rev. Lett.
120
,
147601
(
2018
).
44.
L. L.
Tao
and
J.
Wang
,
Appl. Phys. Lett.
108
,
062903
(
2016
).
You do not currently have access to this content.