Characterizing a material's thermo-optic coefficient lays the foundation for optimizing thermal tuning of photonic integrated devices, a key feature for applications in optical communication, sensing, and signal processing. Unlike traditional bulk measurements, determining the thermo-optic coefficient (TOC) in microscale photonic devices offers significant advantages in data processing and provides more direct relevance to real-world device performance. In this work, we characterize the TOC of gallium phosphide (GaP) films using an air-cladded ring resonator, built on a GaP-on-insulator (GaP-OI) architecture. The resonator is fabricated via an optimized “etch-n-transfer” process, which incorporates silicon dioxide hard masks to enhance the precision of pattern transfer and improve the waveguide surface cleanliness, reducing defects and ensuring better device performance. The fabricated resonator exhibits a loaded quality factor of (2.18 ± 0.1)×104 at 1550 nm by using contact lithography, with a waveguide propagation loss of 23.8 ± 0.3 dB/cm. At 780 nm, the propagation loss decreases to 16.7 dB/cm. The resonator also shows a temperature-dependent wavelength shift of 65.8 pm/K, allowing us to extract a TOC of 1.19 × 10−4/K for GaP. This high temperature sensitivity empowers the GaP-OI platform particularly well-suited for rapid thermal turning, which is beneficial for a range of applications including optical sensing, optical signal processing, and highly efficient nonlinear conversion.

1.
H.
Hu
,
H.
Ji
,
M.
Galili
,
M.
Pu
,
C.
Peucheret
,
H. C. H.
Mulvad
,
K.
Yvind
,
J. M.
Hvam
,
P.
Jeppesen
, and
L. K.
Oxenløwe
, “
Ultra-high-speed wavelength conversion in a silicon photonic chip
,”
Opt. Express
19
(
21
),
19886
(
2011
).
2.
G.
Grinblat
,
M. P.
Nielsen
,
P.
Dichtl
,
Y.
Li
,
R. F.
Oulton
, and
S. A.
Maier
, “
Ultrafast sub–30-fs all-optical switching based on gallium phosphide
,”
Sci. Adv.
5
(
6
),
eaaw3262
(
2019
).
3.
W.
Yoshiki
and
T.
Tanabe
, “
All-optical switching using Kerr effect in a silica toroid microcavity
,”
Opt. Express
22
(
20
),
24332
24341
(
2014
).
4.
K.
Nishimoto
,
K.
Minoshima
,
T.
Yasui
, and
N.
Kuse
, “
Thermal control of Kerr microresonator soliton comb via an optical sideband
,”
Opt. Lett.
47
(
2
),
281
(
2022
).
5.
L.
Jin
,
L.
Di Lauro
,
A.
Pasquazi
,
M.
Peccianti
,
D. J.
Moss
,
R.
Morandotti
,
B. E.
Little
, and
S. T.
Chu
, “
Optical multi-stability in a nonlinear high-order microring resonator filter
,”
APL Photonics
5
(
5
),
056106
(
2020
).
6.
Q.
Zhao
,
R. O.
Behunin
,
P. T.
Rakich
,
N.
Chauhan
,
A.
Isichenko
,
J.
Wang
,
C.
Hoyt
,
C.
Fertig
,
M. H.
Lin
, and
D. J.
Blumenthal
, “
Low-loss low thermo-optic coefficient Ta2O5 on crystal quartz planar optical waveguides
,”
APL Photonics
5
(
11
),
116103
(
2020
).
7.
Q.
Zhao
,
M. W.
Harrington
,
A.
Isichenko
,
K.
Liu
,
R. O.
Behunin
,
S. B.
Papp
,
P. T.
Rakich
,
C. W.
Hoyt
,
C.
Fertig
, and
D. J.
Blumenthal
, “
Integrated reference cavity with dual-mode optical thermometry for frequency correction
,”
Optica
8
(
11
),
1481
(
2021
).
8.
P.
Wu
,
X.
Tang
,
Y.
Yang
,
Y.
Wang
,
Y.
Yan
,
Z.
Pan
,
X.
Zhang
,
M.
You
,
Z.
Liu
,
C.
Bao
,
X.
Ji
,
Y.
Li
, and
Q.
Zhao
, “
Asymmetric χ(2)-translated optical frequency combs assisted by avoided mode crossing in concentric ring resonators
,”
Opt. Express
32
(
19
),
32924
(
2024
).
9.
E.
Nitiss
,
J.
Hu
,
A.
Stroganov
, and
C.-S.
Brès
, “
Optically reconfigurable quasi-phase-matching in silicon nitride microresonators
,”
Nat. Photonics
16
(
2
),
134
141
(
2022
).
10.
H.
Emmer
,
C. T.
Chen
,
R.
Saive
,
D.
Friedrich
,
Y.
Horie
,
A.
Arbabi
,
A.
Faraon
, and
H. A.
Atwater
, “
Fabrication of single crystal gallium phosphide thin films on glass
,”
Sci. Rep.
7
(
1
),
4643
(
2017
).
11.
K.
Schneider
,
P.
Welter
,
Y.
Baumgartner
,
H.
Hahn
,
L.
Czornomaz
, and
P.
Seidler
, “
Gallium phosphide-on-silicon dioxide photonic devices
,”
J. Lightwave Technol.
36
(
14
),
2994
3002
(
2018
).
12.
L.
Thiel
,
A. D.
Logan
,
S.
Chakravarthi
,
S.
Shree
,
K.
Hestroffer
,
F.
Hatami
, and
K.-M. C.
Fu
, “
Precise electron beam-based target-wavelength trimming for frequency conversion in integrated photonic resonators
,”
Opt. Express
30
(
5
),
6921
(
2022
).
13.
M.
Billet
,
L.
Reis
,
Y.
Léger
,
C.
Cornet
,
F.
Raineri
,
I.
Sagnes
,
K.
Pantzas
,
G.
Beaudoin
,
G.
Roelkens
,
F.
Leo
, and
B.
Kuyken
, “
Gallium phosphide-on-insulator integrated photonic structures fabricated using micro-transfer printing
,”
Opt. Mater. Express
12
(
9
),
3731
(
2022
).
14.
W.
Cheng
,
Z.
Geng
,
Z.
Yu
,
Y.
Liu
,
Y.
Yang
,
P.
Wu
,
H.
Ji
,
X.
Yu
,
Y.
Wang
,
C.
Bao
,
Y.
Li
, and
Q.
Zhao
, “
Wafer-scale inverted gallium phosphide-on-insulator rib waveguides for nonlinear photonics
,”
Opt. Lett.
48
(
14
),
3781
(
2023
).
15.
L.
Thiel
,
J. E.
Castro
,
T. J.
Steiner
,
C. L.
Nguyen
,
A.
Pechilis
,
L.
Duan
,
N.
Lewis
,
G. D.
Cole
,
J. E.
Bowers
, and
G.
Moody
, “
Wafer-scale fabrication of InGaP-on-insulator for nonlinear and quantum photonic applications
,”
Appl. Phys. Lett.
125
(
13
),
131102
(
2024
).
16.
A. P.
Amores
and
M.
Swillo
, “
Heterogeneously integrated InGaP/Si waveguides for nonlinear photonics
,”
Opt. Express
32
(
10
),
16925
16934
(
2024
).
17.
Y.
Wang
,
Z.
Pan
,
Y.
Yan
,
Y.
Yang
,
W.
Zhao
,
N.
Ding
,
X.
Tang
,
P.
Wu
,
Q.
Zhao
, and
Y.
Li
, “
A review of gallium phosphide nanophotonics towards omnipotent nonlinear devices
,”
Nanophotonics
13
(
18
),
3207
3252
(
2024
).
18.
A.
Martin
,
S.
Combrié
,
A.
De Rossi
,
G.
Beaudoin
,
I.
Sagnes
, and
F.
Raineri
, “
Nonlinear gallium phosphide nanoscale photonics [Invited]
,”
Photonics Res.
6
(
5
),
B43
(
2018
).
19.
J.
Cambiasso
,
G.
Grinblat
,
Y.
Li
,
A.
Rakovich
,
E.
Cortés
, and
S. A.
Maier
, “
Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas
,”
Nano Lett.
17
(
2
),
1219
1225
(
2017
).
20.
C.
Wang
,
J.
Cai
,
X.
Liu
,
C.
Chen
,
X.
Chen
, and
K. J.
Karki
, “
In operando quantification of single and multiphoton photocurrents in GaP and InGaN photodetectors with phase-modulated femtosecond light pulses
,”
ACS Photonics
10
,
2c01851
(
2023
).
21.
A. P.
Anthur
,
H.
Zhang
,
Y.
Akimov
,
J. R.
Ong
,
D.
Kalashnikov
,
A. I.
Kuznetsov
, and
L.
Krivitsky
, “
Second harmonic generation in gallium phosphide nano-waveguides
,”
Opt. Express
29
(
7
),
10307
10320
(
2021
).
22.
A. D.
Logan
,
M.
Gould
,
E. R.
Schmidgall
,
K.
Hestroffer
,
Z.
Lin
,
W.
Jin
,
A.
Majumdar
,
F.
Hatami
,
A. W.
Rodriguez
, and
K. M. C.
Fu
, “
400%/W second harmonic conversion efficiency in 14 μm-diameter gallium phosphide-on-oxide resonators
,”
Opt. Express
26
(
26
),
33687
33699
(
2018
).
23.
D. J.
Wilson
,
K.
Schneider
,
S.
Hönl
,
M.
Anderson
,
Y.
Baumgartner
,
L.
Czornomaz
,
T. J.
Kippenberg
, and
P.
Seidler
, “
Integrated gallium phosphide nonlinear photonics
,”
Nat. Photonics
14
(
1
),
57
62
(
2020
).
24.
A.
Nardi
,
A.
Davydova
,
N.
Kuznetsov
,
M. H.
Anderson
,
C.
Möhl
,
J.
Riemensberger
,
T. J.
Kippenberg
, and
P.
Seidler
, “
Integrated chirped photonic-crystal cavities in gallium phosphide for broadband soliton generation
,”
Optica
11
(
10
),
1454
1461
(
2024
).
25.
A. D.
Logan
,
S.
Shree
,
S.
Chakravarthi
,
N.
Yama
,
C.
Pederson
,
K.
Hestroffer
,
F.
Hatami
, and
K.-M. C.
Fu
, “
Triply-resonant sum frequency conversion with gallium phosphide ring resonators
,”
Opt. Express
31
(
2
),
1516
(
2023
).
26.
N.
Kuznetsov
,
A.
Nardi
,
A.
Davydova
,
M.
Churaev
,
J.
Riemensberger
,
P.
Seidler
, and
T. J.
Kippenberg
, “
An integrated gallium phosphide travelling-wave optical parametric amplifier
,” in
2024 Optical Fiber Communications Conference and Exhibition (OFC)
(
IEEE
,
2024
), pp.
1
3
.
27.
L.
Thiel
,
J. E.
Castro
,
T. J.
Steiner
,
N.
Lewis
,
J. E.
Bowers
, and
G.
Moody
, “
InGaP-on-insulator integrated quantum photonic devices fabricated at wafer-scale
,” in
Quantum 2.0 Conference and Exhibition (2024), Paper QM4B.3
(
Optica Publishing Group
,
2024
), p. QM4B.3.
28.
D. P.
Lake
,
M.
Mitchell
,
H.
Jayakumar
,
L. F.
Dos Santos
,
D.
Curic
, and
P. E.
Barclay
, “
Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks
,”
Appl. Phys. Lett.
108
(
3
),
031109
(
2016
).
29.
D. F.
Parsons
and
P. D.
Coleman
, “
Far infrared optical constants of gallium phosphide
,”
Appl. Opt.
10
(
7
),
1683_1
(
1971
).
30.
J.
Wei
,
J. M.
Murray
,
J. O.
Barnes
,
D. M.
Krein
,
P. G.
Schunemann
, and
S.
Guha
, “
Temperature dependent Sellmeier equation for the refractive index of GaP
,”
Opt. Mater. Express
8
(
2
),
485
490
(
2018
).
31.
Z.
Geng
,
W.
Cheng
,
Z.
Yan
,
Q.
Yi
,
Z.
Liu
,
M.
You
,
X.
Yu
,
P.
Wu
,
N.
Ding
,
X.
Tang
,
M.
Wang
,
L.
Shen
, and
Q.
Zhao
, “
Low-loss tantalum pentoxide photonics with a CMOS-compatible process
,”
Opt. Express
32
(
7
),
12291
(
2024
).
32.
S.
Bai
,
Z.
Tang
,
Z.
Huang
, and
J.
Yu
, “
Thermal characterization of Si3N4 thin films using transient thermoreflectance technique
,”
IEEE Trans. Ind. Electron.
56
(
8
),
3238
3243
(
2009
).
33.
L.
Koehler
,
P.
Chevalier
,
E.
Shim
,
B.
Desiatov
,
A.
Shams-Ansari
,
M.
Piccardo
,
Y.
Okawachi
,
M.
Yu
,
M.
Loncar
,
M.
Lipson
,
A. L.
Gaeta
, and
F.
Capasso
, “
Direct thermo-optical tuning of silicon microresonators for the mid-infrared
,”
Opt. Express
26
(
26
),
34965
34976
(
2018
).
34.
Z.
Geng
,
H.
Ji
,
Z.
Yu
,
W.
Cheng
,
P.
Wu
,
Y.
Li
, and
Q.
Zhao
, “
Dispersion-flattened concentric structure for microcomb bandwidth broadening in GaP-OI resonators
,”
J. Opt. Soc. Am. B
40
(
3
),
673
(
2023
).
35.
B.
Tilmann
,
G.
Grinblat
,
R.
Berté
,
M.
Özcan
,
V. F.
Kunzelmann
,
B.
Nickel
,
I. D.
Sharp
,
E.
Cortés
,
S. A.
Maier
, and
Y.
Li
, “
Nanostructured amorphous gallium phosphide on silica for nonlinear and ultrafast nanophotonics
,”
Nanoscale Horiz.
5
(
11
),
1500
1508
(
2020
).
36.
L.
Chang
,
W.
Xie
,
H.
Shu
,
Q.-F.
Yang
,
B.
Shen
,
A.
Boes
,
J. D.
Peters
,
W.
Jin
,
C.
Xiang
,
S.
Liu
,
G.
Moille
,
S.-P.
Yu
,
X.
Wang
,
K.
Srinivasan
,
S. B.
Papp
,
K.
Vahala
, and
J. E.
Bowers
, “
Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators
,”
Nat. Commun.
11
(
1
),
1331
(
2020
).
37.
J.
Václavík
and
D.
Vápenka
, “
Gallium phosphide as a material for visible and infrared optics
,”
EPJ Web Conf.
48
,
00028
(
2013
).
38.
P. G.
Schunemann
,
L. A.
Pomeranz
,
D. J.
Magarrell
,
J. C.
McCarthy
,
K. T.
Zawilski
, and
D. E.
Zelmon
, “
1064-nm-pumped mid-infrared optical parametric oscillator based on orientation-patterned gallium phosphide (OP-GaP)
,” in
2015 Conference on Lasers and Electro-Optics (CLEO)
(
IEEE
,
2015
), pp.
1
2
.
39.
P.
Wu
,
W.
Cheng
,
N.
Ding
,
X.
Tang
,
Z.
Geng
,
Z.
Liu
,
M.
You
,
X.
Yu
,
Y.
Li
, and
Q.
Zhao
, “
Investigation of χ(2)-translated optical frequency combs tunability in gallium phosphide-on- insulator resonators
,”
IEEE Photonics J.
16
(
2
),
1
8
(
2024
).
You do not currently have access to this content.