III-Nitride materials such as gallium nitride (GaN) and indium nitride (InN) are critical for applications in electronics and optoelectronics due to their exceptional properties. However, their high-temperature stability is often limited by decomposition into constituent elements at low nitrogen pressures near or below ambient. This work investigates the use of nonequilibrium nitrogen plasma to stabilize GaN and InN at elevated temperatures and low pressures. Bulk nitride synthesis was demonstrated via plasma-assisted nitridation of Ga and In metals. Following synthesis, the suppression of nitride decomposition at temperatures exceeding the predicted equilibrium limits was accomplished by means of a nonequilibrium nitrogen plasma. Experimental results revealed that the nonequilibrium plasma imparted an additional chemical potential onto the ground state nitrogen by electron impact excitation, stabilizing GaN at 1000 °C and InN at 600 °C for nitrogen partial pressures as low as 10 Pa. With this experimental approach, the chemical potential of excited nitrogen species in the plasma was estimated to be 1.8 eV higher than the ground state value. These findings highlight the potential for plasma-based processing to enable scalable synthesis and stabilization of III-nitrides at high temperatures for advanced material applications.

1.
I.
Grzegory
,
J.
Jun
,
M.
Boćkowski
et al, “
III-V nitrides—Thermodynamics and crystal growth at high N2 pressure
,”
J. Phys. Chem. Solids
56
,
639
647
(
1995
).
2.
J. B.
MacChesney
,
P. M.
Bridenbaugh
, and
P. B.
O'Connor
, “
Thermal stability of indium nitride at elevated temperatures and nitrogen pressures
,”
Mater. Res. Bull.
5
,
783
791
(
1970
).
3.
S.
Krukowski
,
A.
Witek
,
J.
Adamczyk
et al, “
Thermal properties of indium nitride
,”
J. Phys. Chem. Solids
59
,
289
295
(
1998
).
4.
I.
Grzegory
,
S.
Krukowski
,
J.
Jun
et al, “
Stability of indium nitride at N2 pressure up to 20 kbar
,”
AIP Conf. Proc.
309
,
565
568
(
1994
).
5.
J.
Karpiński
and
S.
Porowski
, “
High pressure thermodynamics of GaN
,”
J. Cryst. Growth
66
,
11
20
(
1984
).
6.
J. D.
Albrecht
,
R. P.
Wang
,
P. P.
Ruden
et al, “
Electron transport characteristics of GaN for high temperature device modeling
,”
J. Appl. Phys.
83
,
4777
4781
(
1998
).
7.
D. L.
Rode
and
D. K.
Gaskill
, “
Electron Hall mobility of n‐GaN
,”
Appl. Phys. Lett.
66
,
1972
1973
(
1995
).
8.
W. J.
Fan
,
M. F.
Li
,
T. C.
Chong
et al, “
Electronic properties of zinc‐blende GaN, AlN, and their alloys Ga1−xAlxN
,”
J. Appl. Phys.
79
,
188
194
(
1996
).
9.
F.
Roccaforte
,
F.
Giannazzo
, and
G.
Greco
, “
Ion implantation doping in silicon carbide and gallium nitride electronic devices
,”
Micro
2
,
23
53
(
2022
).
10.
T.
Narita
,
A.
Uedono
, and
T.
Kachi
, “
Effects of hydrogen incorporation Mg diffusion GaN-doped with Mg ions via ultra-high-pressure annealing
,”
Phys. Status Solidi (b)
259
,
2200235
(
2022
).
11.
A.
Uedono
,
H.
Sakurai
,
T.
Narita
et al, “
Effects of ultra-high-pressure annealing on characteristics of vacancies in Mg-implanted GaN studied using a monoenergetic positron beam
,”
Sci. Rep.
10
,
17349
(
2020
).
12.
H.
Sakurai
,
T.
Narita
,
K.
Hirukawa
et al, “
Impacts of high temperature annealing above 1400 °C under N2 overpressure to activate acceptors in Mg-implanted GaN
,” in
Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs
(
IEEE
,
2020
), pp.
321
324
.
13.
M. H.
Breckenridge
,
J.
Tweedie
,
P.
Reddy
et al, “
High Mg activation in implanted GaN by high temperature and ultrahigh pressure annealing
,”
Appl. Phys. Lett.
118
,
022101
(
2021
).
14.
T.
Narita
,
H.
Yoshida
,
K.
Tomita
et al, “
Progress on and challenges of p-type formation for GaN power devices
,”
J. Appl. Phys.
128
,
090901
(
2020
).
15.
B. N.
Feigelson
,
T. J.
Anderson
,
M.
Abraham
et al, “
Multicycle rapid thermal annealing technique and its application for the electrical activation of Mg implanted in GaN
,”
J. Cryst. Growth
350
,
21
26
(
2012
).
16.
J. D.
Greenlee
,
B. N.
Feigelson
,
T. J.
Anderson
et al “
(Invited) from MRTA to SMRTA: Improvements in activating implanted dopants in GaN
,”
ECS Trans.
69
,
97
(
2015
).
17.
J. D.
Greenlee
,
B. N.
Feigelson
,
T. J.
Anderson
et al, “
Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties
,”
J. Appl. Phys.
116
,
063502
(
2014
).
18.
A. G.
Jacobs
,
B. N.
Feigelson
,
J. K.
Hite
et al, “
Role of capping material and GaN polarity on Mg ion implantation activation
,”
Phys. Status Solidi (a)
217
,
1900789
(
2019
).
19.
K.
Yoshida
,
H.
Ohmi
,
K.
Yasutake
et al, “
Formation of indium nitride nanostructures by atmospheric pressure plasma nitridation of molten indium
,”
J. Appl. Phys.
130
,
063301
(
2021
).
20.
A.
Argoitia
,
C. C.
Hayman
,
J. C.
Angus
et al, “
Low pressure synthesis of bulk, polycrystalline gallium nitride
,”
Appl. Phys. Lett.
70
,
179
(
1997
).
21.
T.
Ozawa
,
M.
Dohi
,
T.
Matsuura
et al, “
Synthesis of GaN bulk crystals and melt growth of GaN layers under nitrogen plasma
,”
J. Cryst. Growth
310
,
1785
(
2008
).
22.
V. A.
Sukhoveyev
,
V. A.
Ivantsov
,
I. P.
Nikitina
et al, “
GaN 20-mm diameter ingots grown from melt-solution by seeded technique
,”
Mater. Res. Soc. Symp. Proc.
5
,
438
444
(
1999
).
23.
E.
Thimsen
, “
Polynitrogen high energy density materials synthesized by nonequilibrium plasma
,”
J. Phys. Chem. C
127
,
6601
(
2023
).
24.
E. W.
Lemon
,
I. H.
Bell
,
M. L.
Huber
et al, “
Thermophysical properties of fluid systems
,” in
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2024
).
You do not currently have access to this content.