This paper investigates the effect of alpha-particle irradiation on the memristive properties of titanium oxide-based structures. Multilayer TiOx/Ti structures were fabricated by magnetron sputtering and subjected to alpha-particle irradiation with a fluence of 2 × 1012 ions/cm2. Defect formation was modeled using the Monte Carlo method. The memristive characteristics of the structures were studied before and after bombardment. Ion bombardment was found to increase the number of stable resistive states by nearly three times, extend the number of switching cycles by 1.5 times, and significantly enhance the ROFF/RON ratio. This optimization of memristive parameters is attributed to the formation of locally created defects.

1.
S. H.
Jo
,
T.
Chang
,
I.
Ebong
et al, “
Nanoscale memristor device as synapse in neuromorphic systems
,”
Nano Lett.
10
,
1297
(
2010
).
2.
H.-S. P.
Wong
,
H.-Y.
Lee
,
S.
Yu
et al, “
Metal–oxide RRAM
,”
Proc. IEEE
100
,
1951
(
2012
).
3.
J.
Borghetti
,
G. S.
Snider
,
P. J.
Kuekes
et al, “
‘Memristive’ switches enable ‘stateful’ logic operations via material implication
,”
Nature
464
,
873
(
2010
).
4.
Y. V.
Pershin
and
M.
Di Ventra
, “
Practical approach to programmable analog circuits with memristors
,”
IEEE Trans. Circuits Syst. I
57
,
1857
(
2010
).
5.
D.
Ielmini
, “
Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling
,”
Semicond. Sci. Technol.
31
,
063002
(
2016
).
6.
A.
Mehonic
and
A. J.
Kenyon
, “
Emulating the electrical activity of the neuron using a silicon oxide RRAM cell
,”
Front. Neurosci.
10
,
57
(
2016
).
7.
F.
Merrikh-Bayat
,
M.
Prezioso
,
B.
Chakrabarti
et al, “
Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits
,”
Nat. Commun.
9
,
2331
(
2018
).
8.
Z.
Wang
,
M.
Rao
,
J. W.
Han
et al, “
Capacitive neural network with neuro-transistors
,”
Nat. Commun.
9
(
1
),
3208
(
2018
).
9.
F.
Cai
,
J. M.
Correll
,
S. H.
Lee
et al, “
A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations
,”
Nat. Electron.
2
(
7
),
290
299
(
2019
).
10.
Q.
Xia
and
J. J.
Yang
, “
Memristive crossbar arrays for brain-inspired computing
,”
Nat. Mater.
18
(
4
),
309
323
(
2019
).
11.
P. A.
Forsh
,
S. Y.
Stremoukhov
,
A. S.
Frolova
et al, “
Quantum memristors: A new approach to neuromorphic computing
,”
Usp. Fiz. Nauk
194
(
09
),
905
916
(
2024
).
12.
P.
Pfeiffer
,
I. L.
Egusquiza
,
M.
Di Ventra
et al, “
Quantum memristors
,”
Sci. Rep.
6
,
1
6
(
2016
).
13.
S. Y.
Stremoukhov
,
P. A.
Forsh
, and
K. Y.
Khabarova
et al, “
Model of coupled quantum memristors based on a single trapped 171Yb+ ion
,”
JETP Lett.
119
(
5
),
352
356
(
2024
).
14.
S.
Stremoukhov
,
P.
Forsh
,
K.
Khabarova
et al, “
Proposal for trapped-ion quantum memristor
,”
Entropy
25
,
1134
1112
(
2023
).
15.
X.
Qiu
,
L.
Zhang
,
Y.
Wang
et al, “
Microwave quantum memcapacitor effect
,”
Commun. Mater.
5
(
1
),
70
(
2024
).
16.
M. A.
Aksenov
,
D. V.
Kretinin
,
A. O.
Skvortsov
et al, “
Realizing quantum gates with optically addressable Yb+ 171 ion qudits
,”
Phys. Rev. A
107
(
5
),
052612
(
2023
).
17.
M.
Lanza
, “
A review on resistive switching in high-k dielectrics: A nanoscale point of view using conductive atomic force microscope
,”
Materials
7
,
2155
(
2014
).
18.
I.
Valov
, “
Redox-based resistive switching memories (ReRAMs): Electrochemical systems at the atomic scale
,”
ChemElectroChem
1
,
26
(
2014
).
19.
Y.
Zhu
,
Y.
Zhang
,
S.
Yang
et al, “
Nitrogen-induced filament confinement strategy for implementing reliable resistive switching performance in a-HfOx memristors
,”
Appl. Phys. Lett.
126
(
1
),
013507
(
2025
).
20.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
et al, “
The missing memristor found
,”
Nature
453
,
80
(
2008
).
21.
R.
Waser
and
M.
Aono
, “
Nanoionics-based resistive switching memories
,”
Nat. Mater.
6
,
833
(
2007
).
22.
J. J.
Yang
,
M. D.
Pickett
,
X.
Li
et al, “
Memristive switching mechanism for metal/oxide/metal nanodevices
,”
Nat. Nanotechnol.
3
,
429
(
2008
).
23.
R.
Waser
,
R.
Dittmann
,
C.
Staikov
et al, “
Redox-based resistive switching memories: Nanoionic mechanisms, prospects, and challenges
,”
Adv. Mater.
21
,
2632
(
2009
).
24.
M.
Lübben
,
P.
Karakolis
,
V.
Ioannou-Sougleridis
et al, “
Graphene-modified interface controls transition from VCM to ECM switching modes in Ta/TaOx based memristive devices
,”
Adv. Mater.
27
(
40
),
6202
6207
(
2015
).
25.
A.
Minnekhanov
,
A.
Matsukatova
,
A.
Trofimov
et al, “
Reliable memristive synapses based on parylene-MoOx nanocomposites for neuromorphic applications
,”
ACS Appl. Mater. Interfaces
15
(
47
),
54996
55008
(
2023
).
26.
M. A.
Ryabova
,
A. N.
Matsukatova
,
A. V.
Emelyanov
et al, “
Parylene-MoOx crossbar memristors as a volatile reservoir and non-volatile readout: A homogeneous reservoir computing system
,”
Nanoscale
16
(
44
),
20628
20636
(
2024
).
27.
A. I.
Iliasov
,
A. N.
Matsukatova
,
A. V.
Emelyanov
et al, “
Adapted MLP-Mixer network based on crossbar arrays of fast and multilevel switching (Co–Fe–B)x(LiNbO3)100−x nanocomposite memristors
,”
Nanoscale Horiz.
9
(
2
),
238
247
(
2024
).
28.
G. A.
Yuklyaevskikh
,
B. S.
Shvetsov
,
A. V.
Emelyanov
et al, “
Plasticity of parylene memristors: Compact phenomenological model and synaptic properties
,”
Chaos, Solitons Fractals
190
,
115784
(
2025
).
29.
P.
Divyashree
,
H. A.
Quadri
,
P.
Dwivedi
et al, “
Demonstration of intelligent sensing by nanosensors and use of classification and regression models for electronic nose applications
,”
IEEE Sens. J.
24
,
35423
35428
(
2024
).
30.
J.
Del Valle
,
J. G.
Ramírez
,
M. J.
Rozenberg
et al, “
Challenges in materials and devices for resistive-switching-based neuromorphic computing
,”
J. Appl. Phys.
124
(
21
),
211101
(
2018
).
31.
S.
Lim
,
C.
Sung
,
H.
Kim
et al, “
Improved synapse device with MLC and conductance linearity using quantized conduction for neuromorphic systems
,”
IEEE Electron Device Lett.
39
(
2
),
312
315
(
2018
).
32.
Z.
Wu
,
X.
Zhao
,
Y.
Yang
et al, “
Transformation of threshold volatile switching to quantum point contact originated nonvolatile switching in graphene interface controlled memory devices
,”
Nanoscale Adv.
1
(
9
),
3753
3760
(
2019
).
33.
W.
Banerjee
,
S.
Maikap
,
S. Z.
Rahaman
et al, “
Improved resistive switching memory characteristics using core-shell IrOx nano-dots in Al2O3/WOx bilayer structure
,”
J. Electrochem. Soc.
159
(
2
),
H177
(
2011
).
34.
D. A.
Porter
,
K. E.
Easterling
, and
M. Y.
Sherif
,
Phase Transformations in Metals and Alloys
, 3rd ed. (
Taylor & Francis Group
,
2009
), p.
521
.
35.
S.
Choi
,
S. H.
Tan
,
Z.
Li
et al, “
SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations
,”
Nat. Mater.
17
(
4
),
335
340
(
2018
).
36.
T.
Zeng
,
X.
Zou
,
Z.
Wang
et al, “
Zeolite-based memristive synapse with ultralow sub-10-fJ energy consumption for neuromorphic computation
,”
Small
17
(
13
),
2006662
(
2021
).
37.
B.
Sharmila
and
P.
Dwivedi
, “
Realization of optically stimulated synaptic memristor devices using MoO3
,”
IEEE Photonics Technol. Lett.
35
,
1234
(
2023
).
38.
B.
Sharmila
and
P.
Dwivedi
, “
Nanostructured CuO based reversible memristor devices and their performance during heating/cooling measurements
,”
IEEE Trans. Instrum. Meas.
73
,
1
(
2024
).
39.
B.
Sharmila
,
A. K.
Dikshit
, and
P.
Dwivedi
, “
Device reliability and effect of temperature on memristors: Nanostructured V2O5
,”
IEEE Trans. Device Mater. Reliab.
24
,
329
(
2024
).
40.
M. A.
Tarkhov
,
E. A.
Kuleshova
,
B. A.
Gurovich
et al, “
Properties modification of superconducting single-photon detectors under irradiation low-energy ions
,” in
6th International Conferenceon Nanomaterials, NANOCON 2014—Conference Proceedings
(
Tanger Ltd.
,
2014
), pp.
352
356
.
41.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
, “
SRIM—The stopping and range of ions in matter
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
(
2010
).
42.
J. F.
Ziegler
, “
The electronic and nuclear stopping of energetic ions
,”
Appl. Phys. Lett.
31
,
544
(
1977
).
43.
B. A.
Gurovich
,
K. E.
Prikhod'ko
,
A. N.
Taldenkov
et al, “
Formation of metal nanowires using techniques of the selective removal of atoms and investigation into the electric properties of metal nanowires
,”
Nanotechnol. Russia
7
,
28
35
(
2012
).
44.
D.
Maldonado
,
A.
Cantudo
,
D. V.
Guseinov
et al, “
A statistical and modeling study on the effects of radiation on Au/Ta/ZrO2(Y)/Pt/Ti memristive devices
,”
Chaos, Solitons Fractals
191
,
115909
(
2025
).
45.
D.
Gupta
,
V.
Chauhan
,
S.
Upadhyay
et al, “
Defects engineering and enhancement in optical and structural properties of 2D-MoS2 thin films by high energy ion beam irradiation
,”
Mater. Chem. Phys.
276
,
125422
(
2022
).
46.
B. A.
Gurovich
,
D. I.
Dolgy
,
E. A.
Kuleshova
et al, “
Selective removal of atoms as a new method for fabrication of nanoscale patterned media
,”
Microelectron. Eng.
69
(
2–4
),
358
364
(
2003
).
47.
S.
Gandharava Dahl
,
R.
Ivans
, and
K. D.
Cantley
, “
Modeling memristor radiation interaction events and the effect on neuromorphic learning circuits
,” in
ICONS '18: Proceedings of the International Conference on Neuromorphic Systems
(
ACM
,
2018
), pp.
1
8
.
48.
Y. V.
Balakshin
,
A. A.
Shemukhin
,
A. V.
Nazarov
et al, “
In situ modification and analysis of the composition and crystal structure of a silicon target by ion-beam methods
,”
Tech. Phys.
63
,
1861
(
2018
).
You do not currently have access to this content.