Doped indium oxides, such as indium tin oxide (ITO), have been used as transparent conducting materials and have recently attracted increasing interest as thin-film channel materials for high-performance field-effect transistors. In numerous studies on crystalline ITO, stable bixbyite-type (cubic) and metastable corundum-type (rhombohedral) phases have been investigated. Here, we demonstrate an epitaxial stabilization of the ITO polytype having Rh2O3-II-type (space group: Pbna) orthorhombic structure using an orthorhombic perovskite oxide (110) DyScO3 (DSO) substrate. Distorted-orthorhombic ITO (o-ITO) films could be epitaxially grown at substrate temperatures of approximately 350 °C. The epitaxial relationships were determined to be ITO[100]//DSO[100] and ITO[001]//DSO[001], whereas the [010] of ITO was slightly inclined relative to that of DSO because of the strain effect. The transport properties of a distorted o-ITO film were better than those of a bixbyite-type ITO film grown on yttria-stabilized zirconia substrate, indicating that o-ITO has a potential of high-performance oxide semiconductor contributing to future electronics.

1.
T.
Kim
,
C. H.
Choi
,
J. S.
Hur
,
D.
Ha
,
B. J.
Kuh
,
Y.
Kim
,
M. H.
Cho
,
S.
Kim
, and
J. K.
Jeong
,
Adv. Mater.
35
(
43
),
2204663
(
2023
).
2.
O.
Bierwagen
,
Semicond. Sci. Technol.
30
(
2
),
024001
(
2015
).
3.
R.
Bel Hadj Tahar
,
T.
Ban
,
Y.
Ohya
, and
Y.
Takahashi
,
J. Appl. Phys.
83
(
5
),
2631
2645
(
1998
).
4.
S.
Fujita
,
M.
Oda
,
K.
Kaneko
, and
T.
Hitora
,
Jpn. J. Appl. Phys.
55
(
12
),
1202A3
(
2016
).
5.
M.
Epifani
,
P.
Siciliano
,
A.
Gurlo
,
N.
Barsan
, and
U.
Weimar
,
J. Am. Chem. Soc.
126
(
13
),
4078
4079
(
2004
).
6.
P. D. C.
King
,
T. D.
Veal
,
F.
Fuchs
,
C. Y.
Wang
,
D. J.
Payne
,
A.
Boulanger
,
H.
Zhang
,
G. R.
Bell
,
V.
Cimalla
,
O.
Ambacher
,
R. G.
Egdell
,
F.
Bechstedt
, and
C. F.
McConville
,
Phys. Rev. B
79
,
205211
(
2009
).
7.
K.
Kaneko
,
M.
Kitajima
, and
S.
Fujita
,
MRS Adv.
2
,
301
(
2017
).
8.
H.
Nishinaka
and
M.
Yoshimoto
,
Cryst. Growth Des.
18
(
7
),
4022
4028
(
2018
).
9.
A.
Taguchi
,
S.
Takahashi
,
A.
Sekiguchi
,
K.
Kaneko
,
S.
Fujita
,
T.
Onuma
,
T.
Honda
, and
T.
Yamaguchi
,
Phys. Status Solidi B
259
(
2
),
2100414
(
2022
).
10.
J. A.
Spencer
,
A. L.
Mock
,
A. G.
Jacobs
,
M.
Schubert
,
Y.
Zhang
, and
M. J.
Tadjer
,
Appl. Phys. Rev.
9
(
1
),
011315
(
2022
).
11.
H.
Yusa
,
T.
Tsuchiya
,
N.
Sata
, and
Y.
Ohishi
,
Phys. Rev. B
77
(
6
),
064107
(
2008
).
12.
A.
Gurlo
,
D.
Dzivenko
,
P.
Kroll
, and
R.
Riedel
,
Phys. Status Solidi Rapid Res. Lett.
2
(
6
),
269
271
(
2008
).
13.
M. F.
Bekheet
,
M. R.
Schwarz
,
S.
Lauterbach
,
H.-J.
Kleebe
,
P.
Kroll
,
R.
Riedel
, and
A.
Gurlo
,
Angew. Chem. Int. Ed.
52
(
25
),
6531
6535
(
2013
).
14.
R. D.
Shannon
and
C. T.
Prewitt
,
J. Solid State Chem.
2
(
1
),
134
136
(
1970
).
15.
H.
Yamada
,
Y.
Toyosaki
, and
A.
Sawa
,
J. Appl. Phys.
124
,
105305
(
2018
).
16.
H.
Yamada
,
S.
Dhongade
,
Y.
Toyosaki
,
H.
Matsuzaki
, and
A.
Sawa
,
ACS Appl. Electron. Mater.
6
(
5
),
3395
3402
(
2024
).
17.
R.
Uecker
,
B.
Velickov
,
D.
Klimm
,
R.
Bertram
,
M.
Bernhagen
,
M.
Rabe
,
M.
Albrecht
,
R.
Fornari
, and
D. G.
Schlom
,
J. Cryst. Growth
310
(
10
),
2649
2658
(
2008
).
18.
W. J.
Heward
and
D. J.
Swenson
,
J. Mater. Sci.
42
,
7135
7140
(
2007
).
19.
N.
Taga
,
M.
Maekawa
,
Y.
Shigesato
,
I.
Yasui
,
M.
Kakei
, and
T. E.
Haynes
,
Jpn. J. Appl. Phys.
37
,
6524
6524
(
1998
).
20.
H.
Nakazawa
,
Y.
Ito
,
E.
Matsumoto
,
K.
Adachi
,
N.
Aoki
, and
Y.
Ochiai
,
J. Appl. Phys.
100
(
9
),
093706
(
2006
).
21.
N.
Taga
,
H.
Odaka
,
Y.
Shigesato
,
I.
Yasui
,
M.
Kamei
, and
T. E.
Haynes
,
J. Appl. Phys.
80
(
2
),
978
984
(
1996
).
22.
T.
de Boer
,
M. F.
Bekheet
,
A.
Gurlo
,
R.
Riedel
, and
A.
Moewes
,
Phys. Rev. B
93
(
15
),
155205
(
2016
).
23.
A.
Walsh
and
D. O.
Scanlon
,
Phys. Rev. B
88
(
16
),
161201
(
2013
).
You do not currently have access to this content.