Silicon holds significant potential as a material for future quantum processors. Transistors built in silicon-on-insulator technology and functioning as silicon qubit devices can be fabricated using industry-standard processes, allowing for easy integration with classical control hardware. However, achieving precise management of carrier transfer within the transistor channel is essential, requiring the elimination of electrically active defects that could act as recombination centers. Optimizing such a device demands a detailed characterization of the channel to assess the material purity. This study examines the presence of defects in the channel of fully depleted silicon-on-insulator transistors designed for qubit applications. Source and drain electrodes were connected together and voltage pulses were applied to the gate contact to perform capacitance deep level transient spectroscopy (DLTS) measurements. Electrical simulations conducted using Sentaurus device simulator were used to figure out the extension of the depleted region in the channel. By adjusting the gate voltages, we were able to probe the channel and localize the electrically active defects responsible for DLTS signals. Three dominant hole traps were detected at, respectively, 0.54, 0.57, and 0.65 eV above the valence band edge in the source/drain regions and were associated with bulk and Si/SiO2 interface defects. Their origin is likely related to the damage produced during the formation of p-doping by implantation. This study highlights not only the high quality of the channel material below the gate stack but also the need to keep the source and drain regions far from the gate edges to improve the qubit stability.

2.
D. E.
Shahwar
,
M.
Imran
,
A. B.
Altamimi
et al,
IEEE Access
12
,
180048
(
2024
).
3.
N. S.
Blunt
,
J.
Camps
,
O.
Crawford
et al,
J. Chem. Theory Comput.
18
,
7001
(
2022
).
4.
H.-Y.
Huang
,
M.
Broughton
,
J.
Cotler
et al,
Science
376
,
1182
(
2022
).
5.
B.
Bauer
,
S.
Bravyi
,
M.
Motta
et al,
Chem. Rev.
120
,
12685
(
2020
).
6.
H.
Haeffner
,
C. F.
Roos
, and
R.
Blatt
,
Phys. Rep.
469
,
155
(
2008
).
7.
H.-L.
Huang
,
D.
Wu
,
D.
Fan
et al,
Sci. China Inf. Sci.
63
,
180501
(
2020
).
8.
J. M.
Gambetta
,
J. M.
Chow
, and
M.
Steffen
,
npj Quantum Inf.
3
,
2
(
2017
).
9.
P.
Krantz
,
M.
Kjaergaard
,
F.
Fan
et al,
Appl. Phys. Rev.
6
,
021318
(
2019
).
10.
G.
Burkard
,
T. D.
Ladd
,
A.
Pan
et al,
Rev. Mod. Phys.
95
,
025003
(
2023
).
11.
M.
De Michielis
,
E.
Ferraro
,
E.
Prati
et al,
J. Phys. D
56
,
363001
(
2023
).
12.
L. M. K.
Vandersypen
,
H.
Bluhm
,
J. S.
Clarke
et al,
npj Quantum Inf.
3
,
34
(
2017
).
13.
K.
Wintersperger
,
F.
Dommert
,
T.
Ehmer
et al,
EPJ Quantum Technol.
10
,
32
(
2023
).
14.
S.
Slussarenko
and
G. J.
Pryde
,
Appl. Phys. Rev.
6
,
041303
(
2019
).
15.
G.
Moody
,
V. J.
Sorger
,
D. J.
Blumenthal
et al,
J. Phys. Photonics
4
,
012501
(
2022
).
17.
R.
Acharya
,
I.
Aleiner
,
R.
Allen
et al,
Nature
614
,
676
(
2023
).
18.
S.
Neyens
,
O. K.
Zietz
,
T. F.
Watson
et al,
Nature
629
,
80
(
2024
).
19.
A. M. J.
Zwerver
,
T.
Krähenmann
,
T. F.
Watson
et al,
Nat. Electron.
5
,
184
(
2022
).
20.
M. F.
Gonzalez-Zalba
,
S.
De Franceschi
,
E.
Charbon
et al,
Nat. Electron.
4
,
872
(
2021
).
21.
B.
Klemt
,
V.
Elhomsy
,
M.
Nurizzo
et al,
npj Quantum Inf.
9
,
107
(
2023
).
22.
R.
Maurand
,
X.
Jehl
,
D.
Kotekar-Patil
et al,
Nat. Commun.
7
,
13575
(
2016
).
23.
C.
Spence
,
B.
Cardoso Paz
,
V.
Michal
et al,
Phys. Rev. Appl.
19
,
044010
(
2023
).
24.
A.
Elsayed
,
M. M. K.
Shehata
,
C.
Godfrin
et al,
npj Quantum Inf.
10
,
70
(
2024
).
25.
G.
Ghibaudo
,
O.
Roux
,
C.
Nguyen-Duc
et al,
Phys. Status Solidi (a)
124
,
571
(
1991
).
26.
B.
Cardoso Paz
,
M.
Cassé
,
C.
Theodorou
et al,
IEEE Trans. Electron Devices
67
,
4563
(
2020
).
27.
R.
Asanovski
,
A.
Grill
,
J.
Franco
et al,
IEEE Trans. Electron Devices
70
,
2135
(
2023
).
28.
H.
Oka
,
T.
Matsukawa
,
K.
Kato
et al, in
IEEE Symposium on VLSI Technology
(
IEEE
,
2020
).
29.
S.
Barraud
,
R.
Coquand
,
M.
Cassé
et al,
IEEE Electron Device Lett.
33
,
1526
(
2012
).
30.
I. D.
Hawkins
and
A. R.
Peaker
,
Appl. Phys. Lett.
48
,
227
(
1986
).
31.
I.
Isakov
,
M. J. L.
Sourribes
, and
P. A.
Warburton
,
J. Appl. Phys.
122
,
094305
(
2017
).
32.
P.
Ferrandis
,
M.
El-Khatib
,
M.-A.
Jaud
et al,
J. Appl. Phys.
125
,
035702
(
2019
).
33.
P.
Blood
and
J. W.
Orton
,
Techniques of Physics 14: The Electrical Characterization of Semiconductors: Majority Carriers and Electron States
(
Academic Press
,
1992
).
34.
D. V.
Lang
,
J. Appl. Phys.
45
,
3023
(
1974
).
35.
S.
Weiss
and
R.
Kassing
,
Solid State Electron.
31
,
1733
(
1988
).
36.
C.
Claeys
and
E.
Simoen
,
Radiation Effects in Advanced Semiconductor Materials and Devices
(
Springer
,
2002
).
37.
V. V.
Kveder
,
Y. A.
Osipyan
,
W.
Schröter
et al,
Phys. Status Solidi (a)
72
,
701
(
1982
).
38.
P.
Omling
,
E. R.
Weber
,
L.
Montelius
et al,
Phys. Rev. B
32
,
6571
(
1985
).
39.
T.
Wosinski
,
J. Appl. Phys.
65
,
1566
(
1989
).
40.
Ł.
Gelczuk
,
M.
Dabrowska-Szata
,
G.
Jozwiak
, and
S.
Mater
,
Mater. Sci. Poland
23
,
625
(
2005
); available at https://api.semanticscholar.org/CorpusID:160006684.
41.
E.
Fretwurst
,
V.
Eremin
,
H.
Feick
et al,
Nucl. Instrum. Methods Phys. Res., Sect. A
388
,
356
(
1997
).
42.
M.
Mamor
,
M.
Willander
,
F. D.
Auret
et al,
Phys. Rev. B
63
,
045201
(
2000
).
43.
S.
Fatima
,
C.
Jagadish
,
J.
Lalita
et al,
J. Appl. Phys.
85
,
2562
(
1999
).
44.
J. R.
Troxell
,
Solid-State Electron.
26
,
539
(
1983
).
45.
P. K.
Giri
,
S.
Dhar
,
V. N.
Kulkarni
et al,
J. Appl. Phys.
81
,
260
(
1997
).
46.
O.
Feklisova
,
N.
Yarykin
,
E. B.
Yakimov
et al,
Physica B
308
,
210
(
2001
).
47.
C.
Nyamhere
,
F.
Cristiano
,
F.
Olivie
et al,
J. Appl. Phys.
113
,
184508
(
2013
).
48.
E.
Simoen
,
S.
Jayachandran
,
A.
Delabie
et al,
Semicond. Sci. Technol.
31
,
025015
(
2016
).
49.
E.
Simoen
,
C.
Gong
,
N. E.
Posthuma
et al,
J. Electrochem. Soc.
158
,
H612
(
2011
).
50.
K.
Nishio
,
A. K. A.
Lu
, and
G.
Pourtois
,
Phys. Rev. B
91
,
165303
(
2015
).
51.
H.
Sayama
,
M.
Takai
,
Y.
Yuba
et al,
Appl. Phys. Lett.
61
,
1682
(
1992
).
52.
O. O.
Awadelkarim
,
S. A.
Suliman
,
B.
Monemar
et al,
J. Appl. Phys.
67
,
270
(
1990
).
53.
C.
Perrier
,
A.
Traoré
,
T.
Ito
et al,
Appl. Phys. Lett.
122
,
222105
(
2023
).
54.
E.
Catapano
,
A.
Apra
,
M.
Cassé
et al, in
Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EuroSOI-ULIS),
Caen, France
(
IEEE
,
2021
), pp.
1
4
.
55.
M.
Shin
,
M.
Shi
,
M.
Mouis
et al,
Solid-State Electron.
108
,
30
(
2015
).
56.
M.
Shin
,
M.
Shi
,
M.
Mouis
et al,
Solid-State Electron.
112
,
13
(
2015
).
You do not currently have access to this content.