Valleytronics, utilizing the valley degree of freedom in electrons, has potential for advancing the next-generation nonvolatile storage. However, practical implementation remains challenging due to the limited control over valleytronic properties. Here, we propose ferroelectric HfCl2/Sc2CO2 van der Waals heterostructure as a platform to overcome these limitations, enabling tunable and nonvolatile valleytronic behaviors. Our findings show that the electric polarization state of the Sc2CO2 monolayer governs the electronic properties of heterostructures. Positive polarization induces a direct gap at the valleys, enabling valleytronic functionality for excitation and readout via circularly polarized light, while negative polarization results in an indirect-gap, suppressing valleytronic behavior. Moreover, our transport simulations further demonstrate a polarization-dependent ferroelectric p-i-n junction with 8 nm possesses a maximum tunnel electroresistance (TER) ratio of 1.60 × 108% at a bias of 0.5 eV. These results provide insights into ferroelectric-controlled valleytronic transitions and position the HfCl2/Sc2CO2 heterostructure as a promising candidate for energy-efficient valleytronic memory and nonvolatile storage applications.

1.
T.
Norden
,
C.
Zhao
,
P.
Zhang
,
R.
Sabirianov
,
A.
Petrou
, and
H.
Zeng
, “
Giant valley splitting in monolayer WS2 by magnetic proximity effect
,”
Nat. Commun.
10
,
4163
(
2019
).
2.
J. R.
Schaibley
,
H.
Yu
,
G.
Clark
,
P.
Rivera
,
J. S.
Ross
,
K. L.
Seyler
,
W.
Yao
, and
X.
Xu
, “
Valleytronics in 2D materials
,”
Nat. Rev. Mater.
1
,
16055
(
2016
).
3.
S.
Yang
,
H.
Long
,
W.
Chen
,
B.
Sa
,
Z.
Guo
,
J.
Zheng
,
J.
Pei
,
H.
Zhan
, and
Y.
Lu
, “
Valleytronics meets straintronics: Valley fine structure engineering of 2D transition metal dichalcogenides
,”
Adv. Opt. Mater.
12
,
2302900
(
2024
).
4.
Y.
Shimazaki
,
M.
Yamamoto
,
I. V.
Borzenets
,
K.
Watanabe
,
T.
Taniguchi
, and
S.
Tarucha
, “
Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene
,”
Nat. Phys.
11
,
1032
1036
(
2015
).
5.
H.
Sun
,
S.-S.
Li
,
W.-X.
Ji
, and
C.-W.
Zhang
, “
Valley-dependent topological phase transition and quantum anomalous valley Hall effect in single-layer RuClBr
,”
Phys. Rev. B
105
,
195112
(
2022
).
6.
T.
Zhou
,
S.
Cheng
,
M.
Schleenvoigt
,
P.
Schüffelgen
,
H.
Jiang
,
Z.
Yang
, and
I.
Žutić
, “
Quantum spin-valley Hall kink states: From concept to materials design
,”
Phys. Rev. Lett.
127
,
116402
(
2021
).
7.
A.
Ciarrocchi
,
F.
Tagarelli
,
A.
Avsar
, and
A.
Kis
, “
Excitonic devices with van der Waals heterostructures: Valleytronics meets twistronics
,”
Nat. Rev. Mater.
7
,
449
464
(
2022
).
8.
A.
Pal
,
S.
Zhang
,
T.
Chavan
,
K.
Agashiwala
,
C. H.
Yeh
,
W.
Cao
, and
K.
Banerjee
, “
Quantum‐engineered devices based on 2D materials for next‐generation information processing and storage
,”
Adv. Mater.
35
,
2109894
(
2023
).
9.
X.
Yu
,
Z.
Peng
,
L.
Xu
,
W.
Shi
,
Z.
Li
,
X.
Meng
,
X.
He
,
Z.
Wang
,
S.
Duan
, and
L.
Tong
, “
Manipulating 2D materials through strain engineering
,”
Small
20
,
2402561
(
2024
).
10.
L.
Li
,
S.
Jiang
,
Z.
Wang
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Shan
, and
K. F.
Mak
, “
Electrical switching of valley polarization in monolayer semiconductors
,”
Phys. Rev. Mater.
4
,
104005
(
2020
).
11.
H.
Chen
,
P.
Zhou
,
J.
Liu
,
J.
Qiao
,
B.
Oezyilmaz
, and
J.
Martin
, “
Gate controlled valley polarizer in bilayer graphene
,”
Nat. Commun.
11
,
1202
(
2020
).
12.
S.
Yang
,
W.
Chen
,
B.
Sa
,
Z.
Guo
,
J.
Zheng
,
J.
Pei
, and
H.
Zhan
, “
Strain-dependent band splitting and spin-flip dynamics in monolayer WS2
,”
Nano Lett.
23
,
3070
3077
(
2023
).
13.
G.
Xu
,
T.
Zhou
,
B.
Scharf
, and
I.
Žutić
, “
Optically probing tunable band topology in atomic monolayers
,”
Phys. Rev. Lett.
125
,
157402
(
2020
).
14.
S.
Li
,
W.
Wu
,
X.
Feng
,
S.
Guan
,
W.
Feng
,
Y.
Yao
, and
S. A.
Yang
, “
Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4
,”
Phys. Rev. B
102
,
235435
(
2020
).
15.
Y.
Yang
,
X.
Cheng
,
L.
Xiao
,
S.
Jia
,
J.
Chen
,
L.
Zhang
, and
J.
Wang
, “
Electric field controlled valley-polarized photocurrent switch based on the circular bulk photovoltaic effect
,”
Phys. Rev. B
109
,
235403
(
2024
).
16.
T.
Zhou
,
J.
Zhang
,
H.
Jiang
,
I.
Žutić
, and
Z.
Yang
, “
Giant spin-valley polarization and multiple Hall effect in functionalized bismuth monolayers
,”
npj Quantum Mater.
3
,
39
(
2018
).
17.
T.
Zhou
,
J.
Zhang
,
Y.
Xue
,
B.
Zhao
,
H.
Zhang
,
H.
Jiang
, and
Z.
Yang
, “
Quantum spin–quantum anomalous Hall effect with tunable edge states in Sb monolayer-based heterostructures
,”
Phys. Rev. B
94
,
235449
(
2016
).
18.
T.
Zhou
,
J.
Zhang
,
B.
Zhao
,
H.
Zhang
, and
Z.
Yang
, “
Quantum spin-quantum anomalous Hall insulators and topological transitions in functionalized Sb(111) monolayers
,”
Nano Lett.
15
,
5149
5155
(
2015
).
19.
Y.
Hu
,
X.
Wen
,
J.
Lin
,
W.
Yao
,
Y.
Chen
,
J.
Li
,
S.
Chen
,
L.
Wang
,
W.
Xu
, and
D.
Li
, “
All-optical valley polarization switch via controlling spin-triplet and spin-singlet interlayer exciton emission in WS2/WSe2 heterostructure
,”
Nano Lett.
23
,
6581
6587
(
2023
).
20.
K.-H.
Kim
,
I.
Karpov
,
R. H.
Olsson
III
, and
D.
Jariwala
, “
Wurtzite and fluorite ferroelectric materials for electronic memory
,”
Nat. Nanotechnol.
18
,
422
441
(
2023
).
21.
C.
Wang
,
L.
You
,
D.
Cobden
, and
J.
Wang
, “
Towards two-dimensional van der Waals ferroelectrics
,”
Nat. Mater.
22
,
542
552
(
2023
).
22.
X.
Duan
,
Z.
Zhu
,
X.
Chen
,
Z.
Song
, and
J.
Qi
, “
Nonvolatile electric-field control of topological phase transition in a two-dimensional ferroelectric heterostructure
,”
J. Mater. Chem. C
12
,
6278
6287
(
2024
).
23.
Z.
Cui
,
T.
Li
,
R.
Xiong
,
C.
Wen
,
Y.
Zhang
,
J.
Zheng
,
B.
Wu
, and
B.
Sa
, “
The giant tunneling electroresistance effect in monolayer In2SSeTe-based lateral ferroelectric tunnel junctions
,”
Mater. Adv.
4
,
1572
1582
(
2023
).
24.
D. D.
Fong
,
G. B.
Stephenson
,
S. K.
Streiffer
,
J. A.
Eastman
,
O.
Auciello
,
P. H.
Fuoss
, and
C.
Thompson
, “
Ferroelectricity in ultrathin perovskite films
,”
Science
304
,
1650
1653
(
2004
).
25.
Y.
Kim
,
D.
Kim
,
J.
Kim
,
Y.
Chang
,
T.
Noh
,
J.
Kong
,
K.
Char
,
Y.
Park
,
S.
Bu
, and
J.-G.
Yoon
, “
Critical thickness of ultrathin ferroelectric BaTiO3 films
,”
Appl. Phys. Lett.
86
,
102907
(
2005
).
26.
M.
Stengel
and
N. A.
Spaldin
, “
Origin of the dielectric dead layer in nanoscale capacitors
,”
Nature
443
,
679
682
(
2006
).
27.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D-e
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
28.
X.
Huang
,
R.
Xiong
,
C.
Hao
,
W.
Li
,
B.
Sa
,
J.
Wiebe
, and
R.
Wiesendanger
, “
Experimental realization of monolayer α-tellurene
,”
Adv. Mater.
36
,
2309023
(
2024
).
29.
T.
Zhang
,
L.
Zhu
,
H.
Liu
,
J.
Zhou
, and
Z.
Sun
, “
Ordering phenomena in ternary transition-metal dichalcogenides: Critical role of lattice symmetry and vdW interaction
,”
Mater. Genome Eng. Adv.
1
,
e7
(
2023
).
30.
Z.
Yang
,
Z.
Yang
,
L.
Liu
,
X.
Li
,
J.
Li
,
C.
Xiong
,
X.
Mai
,
H.
Tong
,
Y.
Li
,
K.-H.
Xue
,
X.
Xue
,
M.
Xu
,
D.
Li
,
P.
Zhou
, and
X.
Miao
, “
Anisotropic mass transport enables distinct synaptic behaviors on 2D material surface
,”
Mater. Today Electron.
5
,
100047
(
2023
).
31.
S.
Huang
,
J.
Bai
,
H.
Long
,
S.
Yang
,
W.
Chen
,
Q.
Wang
,
B.
Sa
,
Z.
Guo
,
J.
Zheng
,
J.
Pei
,
K.-Z.
Du
, and
H.
Zhan
, “
Thermally activated photoluminescence induced by tunable interlayer interactions in naturally occurring van der Waals superlattice SnS/TiS2
,”
Nano Lett.
24
,
6061
6068
(
2024
).
32.
F.
Liu
,
L.
You
,
K. L.
Seyler
,
X.
Li
,
P.
Yu
,
J.
Lin
,
X.
Wang
,
J.
Zhou
,
H.
Wang
, and
H.
He
, “
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
,”
Nat. Commun.
7
,
1
6
(
2016
).
33.
J. Z. X.
Duan
,
Z.
Zhang
,
I.
Zutic
, and
T.
Zhou
, “
Antiferroelectric altermagnets: Antiferroelectricity alters magnets
,” arXiv:2410.06071 (
2024
).
34.
Y.
Zhou
,
D.
Wu
,
Y.
Zhu
,
Y.
Cho
,
Q.
He
,
X.
Yang
,
K.
Herrera
,
Z.
Chu
,
Y.
Han
, and
M. C.
Downer
, “
Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes
,”
Nano Lett.
17
,
5508
5513
(
2017
).
35.
L.
Qi
,
S.
Ruan
, and
Y. J.
Zeng
, “
Review on recent developments in 2D ferroelectrics: Theories and applications
,”
Adv. Mater.
33
,
2005098
(
2021
).
36.
Y.-C.
Lin
,
R.
Torsi
,
R.
Younas
,
C. L.
Hinkle
,
A. F.
Rigosi
,
H. M.
Hill
,
K.
Zhang
,
S.
Huang
,
C. E.
Shuck
, and
C.
Chen
, “
Recent advances in 2D material theory, synthesis, properties, and applications
,”
ACS Nano
17
,
9694
9747
(
2023
).
37.
H. W.
Guo
,
Z.
Hu
,
Z. B.
Liu
, and
J. G.
Tian
, “
Stacking of 2D materials
,”
Adv. Funct. Mater.
31
,
2007810
(
2021
).
38.
H.
Wang
,
Z.
Li
,
D.
Li
,
P.
Chen
,
L.
Pi
,
X.
Zhou
, and
T.
Zhai
, “
Van der Waals integration based on two‐dimensional materials for high‐performance infrared photodetectors
,”
Adv. Funct. Mater.
31
,
2103106
(
2021
).
39.
Z.
Zhu
,
X.
Chen
,
W.
Li
, and
J.
Qi
, “
Electric field control of the semiconductor-metal transition in two dimensional CuInP2S6/germanene van der Waals heterostructure
,”
Appl. Phys. Lett.
114
,
223102
(
2019
).
40.
Z.
Zhu
,
X.
Chen
,
W.
Li
, and
J.
Qi
, “
Controllable magnetism driven by carrier confinement and ferroelectric polarization in a two-dimensional heterostructure
,”
J. Mater. Chem. C
8
,
17342
17348
(
2020
).
41.
R.
Xiong
,
L.
Zhang
,
C.
Wen
,
M.
Anpo
,
Y. S.
Ang
, and
B.
Sa
, “
Ferroelectric switching driven photocatalytic overall water splitting in As/In2Se3 heterostructure
,”
J. Mater. Chem A.
13
,
4563
4575
(
2025
).
42.
X.
Huang
,
R.
Xiong
,
C.
Hao
,
P.
Beck
,
B.
Sa
,
J.
Wiebe
, and
R.
Wiesendanger
, “
2D lateral heterojunction arrays with tailored interface band bending
,”
Adv. Mater.
36
,
2308007
(
2024
).
43.
Y.
Shi
,
Y.
Zhang
,
J.
Wen
,
Z.
Cui
,
J.
Chen
,
X.
Huang
,
C.
Wen
,
B.
Sa
, and
Z.
Sun
, “
Interpretable machine learning for stability and electronic structure prediction of Janus III–VI van der Waals heterostructures
,”
Mater. Genome Eng. Adv.
2
,
e76
(
2024
).
44.
Z.
Zhang
,
R.
Sun
, and
Z.
Wang
, “
Recent advances in two-dimensional ferromagnetic materials-based van der Waals heterostructures
,”
ACS Nano
19
,
187
228
(
2025
).
45.
E.
Sutter
,
H.-P.
Komsa
, and
P.
Sutter
, “
Valley-selective carrier transfer in SnS-based van der Waals heterostructures
,”
Nanoscale Horiz.
9
,
1823
1832
(
2024
).
46.
C.
Jiang
,
A.
Rasmita
,
H.
Ma
,
Q.
Tan
,
Z.
Zhang
,
Z.
Huang
,
S.
Lai
,
N.
Wang
,
S.
Liu
,
X.
Liu
,
T.
Yu
,
Q.
Xiong
, and
W-b
Gao
, “
A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures
,”
Nat. Electron.
5
,
23
27
(
2021
).
47.
D.
Hoat
,
M.
Naseri
,
N. N.
Hieu
,
R.
Ponce-Pérez
,
J.
Rivas-Silva
,
T. V.
Vu
, and
G. H.
Cocoletzi
, “
A comprehensive investigation on electronic structure, optical and thermoelectric properties of the HfSSe Janus monolayer
,”
J. Phys. Chem. Solids
144
,
109490
(
2020
).
48.
J.
Bera
,
A.
Betal
, and
S.
Sahu
, “
Spin orbit coupling induced enhancement of thermoelectric performance of HfX2 (X = S, Se) and its Janus monolayer
,”
J. Alloys Compd.
872
,
159704
(
2021
).
49.
V. D.
Dat
and
T. V.
Vu
, “
Janus monolayer HfSO with improved optical properties as a novel material for photovoltaic and photocatalyst applications
,”
New J. Chem.
46
,
1557
1568
(
2022
).
50.
D. K.
Nguyen
,
J.
Guerrero-Sanchez
, and
D. M.
Hoat
, “
HfXO (X = S and Se) Janus monolayers as promising two-dimensional platforms for optoelectronic and spintronic applications
,”
J. Mater. Res.
38
,
2600
2612
(
2023
).
51.
P.
Zhao
,
Y.
Liang
,
Y.
Ma
, and
T.
Frauenheim
, “
Valley physics and anomalous valley Hall effect in single-layer h-MNX (M = Ti, Zr, Hf; X = Cl, Br)
,”
Phys. Rev. B
107
,
035416
(
2023
).
52.
M. K.
Mohanta
and
A.
De Sarkar
, “
Coupled spin and valley polarization in monolayer HfN2 and valley-contrasting physics at the HfN2-WSe2 interface
,”
Phys. Rev. B
102
,
125414
(
2020
).
53.
D. C.
Hvazdouski
,
M. S.
Baranava
,
E. A.
Korznikova
,
A. A.
Kistanov
, and
V. R.
Stempitsky
, “
Search on stable binary and ternary compounds of two-dimensional transition metal halides
,”
2D Mater.
11
,
025022
(
2024
).
54.
F.
Shahzad
,
A.
Iqbal
,
H.
Kim
, and
C. M.
Koo
, “
2D transition metal carbides (MXenes): Applications as an electrically conducting material
,”
Adv. Mater.
32
,
2002159
(
2020
).
55.
S.
Yan
,
Q.
Ma
,
C.
Wen
,
L.
Luo
,
J.
Jin
,
X.
Li
,
Y.
Fang
, and
B.
Sa
, “
Enhanced biological behavior and photothermal antibacterial performance of TiNbCTx MXene modified mesoporous bioactive glass nanocomposites
,”
Adv. Funct. Mater.
35
2419993
(
2025
).
56.
L.
Song
,
R.
Ye
,
C.
Su
,
C.
Wei
,
D.
Chen
,
X.
Liu
,
X.
Zheng
, and
H.
Hao
, “
Strain-tunable half-metallicity in VSe2/Sc2CO2 van der Waals heterostructures
,”
Phys. Rev. B
109
,
094105
(
2024
).
57.
Y.
Zhang
,
Y.
Shen
,
L.
Lv
,
M.
Zhou
,
X.
Yang
,
X.
Meng
,
N.
Zhang
,
K.
Wang
,
B.
Zhang
, and
Z.
Zhou
, “
Polarization-direction-controlled Z-scheme photocatalytic switch in Sc2CO2/PtS2 heterostructures: A first-principles study
,”
Phys. Rev. Appl.
20
,
044066
(
2023
).
58.
A.
Xie
,
H.
Hao
,
C.-S.
Liu
,
X.
Zheng
,
L.
Zhang
, and
Z.
Zeng
, “
Giant tunnel electroresistance in two-dimensional ferroelectric tunnel junctions constructed with a Sc2CO2/In2Se3 van der Waals ferroelectric heterostructure
,”
Phys. Rev. B
107
,
115427
(
2023
).
59.
J.
Kang
,
W.
Liu
,
D.
Sarkar
,
D.
Jena
, and
K.
Banerjee
, “
Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors
,”
Phys. Rev. X
4
,
031005
(
2014
).
60.
J.
Liao
,
B.
Sa
,
J.
Zhou
,
R.
Ahuja
, and
Z.
Sun
, “
Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN (GaN) heterostructures
,”
J. Phys. Chem. C
118
,
17594
17599
(
2014
).
61.
Z.
Wen
and
D.
Wu
, “
Ferroelectric tunnel junctions: Modulations on the potential barrier
,”
Adv. Mater.
32
,
1904123
(
2020
).
62.
W.-R.
Liu
,
X.-J.
Dong
,
Y.-Z.
Lv
,
W.-X.
Ji
,
Q.
Cao
,
P.-J.
Wang
,
F.
Li
, and
C.-W.
Zhang
, “
Magnetic anisotropy and ferroelectric-driven magnetic phase transition in monolayer Cr2Ge2Te6
,”
Nanoscale
14
,
3632
3643
(
2022
).
63.
B. T.
Zhou
,
K.
Taguchi
,
Y.
Kawaguchi
,
Y.
Tanaka
, and
K. T.
Law
, “
Spin-orbit coupling induced valley Hall effects in transition-metal dichalcogenides
,”
Commun. Phys.
2
,
26
(
2019
).
64.
M. K.
Mohanta
,
F.
Is
, and
A.
De Sarkar
, “
Valley Hall effect in graphene-like SnX (X = Si, Ge) buckled monolayers with high charge carrier mobility and low lattice thermal conductivity
,”
Phys. Rev. B
107
,
035429
(
2023
).
65.
D.
Xiao
,
G.-B.
Liu
,
W.
Feng
,
X.
Xu
, and
W.
Yao
, “
Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides
,”
Phys. Rev. Lett.
108
,
196802
(
2012
).
66.
K. F.
Mak
,
K.
He
,
J.
Shan
, and
T. F.
Heinz
, “
Control of valley polarization in monolayer MoS2 by optical helicity
,”
Nat. Nanotechnol.
7
,
494
498
(
2012
).
67.
J. P.
Velev
,
C.-G.
Duan
,
J.
Burton
,
A.
Smogunov
,
M. K.
Niranjan
,
E.
Tosatti
,
S.
Jaswal
, and
E. Y.
Tsymbal
, “
Magnetic tunnel junctions with ferroelectric barriers: Prediction of four resistance states from first principles
,”
Nano Lett.
9
,
427
432
(
2009
).
You do not currently have access to this content.