Two-dimensional gallium nitride (2D-GaN) has great potential in power electronics and optoelectronics. Heat dissipation is a critical issue for these applications of 2D-GaN. Previous studies have shown that higher-order phonon–phonon scattering has extremely strong effects on the lattice thermal conductivity (κlat) of 2D-GaN, with the fourth-order interatomic force constants (4th-IFCs) calculated using experienced atomic displacement in the finite difference method. In this work, it is found that the 4th-IFCs of 2D-GaN are quite sensitive to atomic displacement in the finite difference method. The effects of the four-phonon scattering can be severely overestimated with non-convergent 4th-IFCs. The κlat from three-phonon scattering is reduced by 65.6% due to four-phonon scattering. The reflection symmetry allows significantly more four-phonon processes than three-phonon processes. It was previously thought the electron–phonon interactions have significant effects on the κlat of two-dimensional materials. However, the effects of electron–phonon interactions on the κlat of both n-type and p-type 2D-GaN at high charge carrier concentrations can be neglected due to the few phonon–electron scattering channels and the relatively strong four-phonon scattering.

1.
T. K.
Sahu
,
S. P.
Sahu
,
K.
Hembram
,
J.-K.
Lee
,
V.
Biju
, and
P.
Kumar
, “
Free-standing 2D gallium nitride for electronic, excitonic, spintronic, piezoelectric, thermoplastic, and 6G wireless communication applications
,”
NPG Asia Mater.
15
,
49
(
2023
).
2.
T.-W.
Yeh
,
Y.-T.
Lin
,
B.
Ahn
,
L. S.
Stewart
,
P.
Daniel Dapkus
, and
S. R.
Nutt
, “
Vertical nonpolar growth templates for light emitting diodes formed with GaN nanosheets
,”
Appl. Phys. Lett.
100
,
033119
(
2012
).
3.
Y.
Chen
,
K.
Liu
,
J.
Liu
,
T.
Lv
,
B.
Wei
,
T.
Zhang
,
M.
Zeng
,
Z.
Wang
, and
L.
Fu
, “
Growth of 2D GaN single crystals on liquid metals
,”
J. Am. Chem. Soc.
140
,
16392
16395
(
2018
).
4.
Y.
Chen
,
J.
Liu
,
K.
Liu
,
J.
Si
,
Y.
Ding
,
L.
Li
,
T.
Lv
,
J.
Liu
, and
L.
Fu
, “
GaN in different dimensionalities: Properties, synthesis, and applications
,”
Mater. Sci. Eng., R
138
,
60
84
(
2019
).
5.
S.-Y.
Yue
,
R.
Yang
, and
B.
Liao
, “
Controlling thermal conductivity of two-dimensional materials via externally induced phonon-electron interaction
,”
Phys. Rev. B
100
,
115408
(
2019
).
6.
Z.
Tong
,
T.
Dumitrica
, and
T.
Frauenheim
, “
Ultralow thermal conductivity in two-dimensional MoO3
,”
Nano Lett.
21
,
4351
4356
(
2021
).
7.
X.
Yang
,
Z.
Liu
,
F.
Meng
, and
W.
Li
, “
Tuning the phonon transport in bilayer graphene to an anomalous regime dominated by electron-phonon scattering
,”
Phys. Rev. B
104
,
L100306
(
2021
).
8.
C.
Liu
,
M.
Yao
,
J.
Yang
,
J.
Xi
, and
X.
Ke
, “
Strong electron-phonon interaction induced significant reduction in lattice thermal conductivities for single-layer MoS2 and PtSSe
,”
Mater. Today Phys.
15
,
100277
(
2020
).
9.
H.
Guo
,
W.
Yan
,
J.
Sun
,
Y.
Pan
,
H.
He
,
Y.
Zhang
,
F.
Yang
,
Y.
Wang
,
C.
Zhang
,
R.
Li
et al, “
Four-phonon scattering and thermal transport in 2H–MoTe2
,”
Mater. Today Phys.
40
,
101314
(
2024
).
10.
Y.
Jiang
,
S.
Cai
,
Y.
Tao
,
Z.
Wei
,
K.
Bi
, and
Y.
Chen
, “
Phonon transport properties of bulk and monolayer GaN from first-principles calculations
,”
Comput. Mater. Sci.
138
,
419
425
(
2017
).
11.
Z.
Qin
,
G.
Qin
,
X.
Zuo
,
Z.
Xiong
, and
M.
Hu
, “
Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: A comparative study
,”
Nanoscale
9
,
4295
4309
(
2017
).
12.
C.
Shen
,
N.
Hadaeghi
,
H. K.
Singh
,
T.
Long
,
L.
Fan
,
G.
Qin
, and
H.
Zhang
, “
Two-dimensional buckling structure induces the ultra-low thermal conductivity: A comparative study of the group GaX (X= N, P, As)
,”
J. Mater. Chem. C
10
,
1436
1444
(
2022
).
13.
X.
Cai
,
G.
Sun
,
Y.
Xu
,
J.
Ma
, and
D.
Xu
, “
Effect of hydrogenation on the thermal conductivity of 2D gallium nitride
,”
Phys. Chem. Chem. Phys.
23
,
22423
22429
(
2021
).
14.
G.
Sun
,
J.
Ma
,
C.
Liu
,
Z.
Xiang
,
D.
Xu
,
T.-H.
Liu
, and
X.
Luo
, “
Four-phonon and normal scattering in 2D hexagonal structures
,”
Int. J. Heat Mass Transf.
215
,
124475
(
2023
).
15.
T.
Feng
and
X.
Ruan
, “
Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons
,”
Phys. Rev. B
97
,
045202
(
2018
).
16.
Z.
Han
,
X.
Yang
,
S. E.
Sullivan
,
T.
Feng
,
L.
Shi
,
W.
Li
, and
X.
Ruan
, “
Raman linewidth contributions from four-phonon and electron-phonon interactions in graphene
,”
Phys. Rev. Lett.
128
,
045901
(
2022
).
17.
G.
Li
,
J.
Tang
,
J.
Zheng
,
Q.
Wang
,
Z.
Cui
,
K.
Xu
,
J.
Xu
,
T.-H.
Liu
,
G.
Zhu
,
R.
Guo
et al, “
Convergent thermal conductivity in strained monolayer graphene
,”
Phys. Rev. B
109
,
035420
(
2024
).
18.
H.
Zhou
,
S.
Zhou
,
Z.
Hua
,
K.
Bawane
, and
T.
Feng
, “
Extreme sensitivity of higher-order interatomic force constants and thermal conductivity to the energy surface roughness of exchange-correlation functionals
,”
Appl. Phys. Lett.
123
,
192201
(
2023
).
19.
B.
Dongre
,
J.
Carrete
,
N.
Mingo
, and
G. K.
Madsen
, “
Thermal conductivity of group-III phosphides: The special case of GaP
,”
Phys. Rev. B
106
,
205202
(
2022
).
20.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
et al, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.
21
,
395502
(
2009
).
21.
K.
Jackson
and
M. R.
Pederson
, “
Accurate forces in a local-orbital approach to the local-density approximation
,”
Phys. Rev. B
42
,
3276
(
1990
).
22.
D.
Hamann
, “
Optimized norm-conserving Vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
23.
M. J.
van Setten
,
M.
Giantomassi
,
E.
Bousquet
,
M. J.
Verstraete
,
D. R.
Hamann
,
X.
Gonze
, and
G.-M.
Rignanese
, “
The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
,”
Comput. Phys. Commun.
226
,
39
54
(
2018
).
24.
R.
Fletcher
, “
A new approach to variable metric algorithms
,”
Comput. J.
13
,
317
322
(
1970
).
25.
C. G.
Broyden
, “
The convergence of a class of double-rank minimization algorithms 1. general considerations
,”
IMA J. Appl. Math.
6
,
76
90
(
1970
).
26.
D.
Goldfarb
, “
A family of variable-metric methods derived by variational means
,”
Math. Comput.
24
,
23
26
(
1970
).
27.
D. F.
Shanno
, “
Conditioning of quasi-Newton methods for function minimization
,”
Math. Comput.
24
,
647
656
(
1970
).
28.
Z. Y.
Al Balushi
,
K.
Wang
,
R. K.
Ghosh
,
R. A.
Vilá
,
S. M.
Eichfeld
,
J. D.
Caldwell
,
X.
Qin
,
Y.-C.
Lin
,
P. A.
DeSario
,
G.
Stone
et al, “
Two-dimensional gallium nitride realized via graphene encapsulation
,”
Nat. Mater.
15
,
1166
1171
(
2016
).
29.
S.
Baroni
,
S.
De Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
, “
Phonons and related crystal properties from density-functional perturbation theory
,”
Rev. Mod. Phys.
73
,
515
(
2001
).
30.
C.
Lin
,
S.
Poncé
, and
N.
Marzari
, “
General invariance and equilibrium conditions for lattice dynamics in 1D, 2D, and 3D materials
,”
npj Comput. Mater.
8
,
236
(
2022
).
31.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
, “
ShengBTE: A solver of the Boltzmann transport equation for phonons
,”
Comput. Phys. Commun.
185
,
1747
1758
(
2014
).
32.
Z.
Han
,
X.
Yang
,
W.
Li
,
T.
Feng
, and
X.
Ruan
, “
FourPhonon: An extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity
,”
Comput. Phys. Commun.
270
,
108179
(
2022
).
33.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
(
2012
).
34.
T.
Sohier
,
M.
Calandra
, and
F.
Mauri
, “
Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations
,”
Phys. Rev. B
94
,
085415
(
2016
).
35.
W. H.
Sio
and
F.
Giustino
, “
Unified ab initio description of Fröhlich electron-phonon interactions in two-dimensional and three-dimensional materials
,”
Phys. Rev. B
105
,
115414
(
2022
).
36.
T.
Wang
,
X.
Duan
,
H.
Zhang
,
J.
Ma
,
H.
Zhu
,
X.
Qian
,
J.-Y.
Yang
,
T.-H.
Liu
, and
R.
Yang
, “
Origins of three-dimensional charge and two-dimensional phonon transports in Pnma phase PbSnSe2 thermoelectric crystal
,”
InfoMat
5
,
e12481
(
2023
).
37.
J.
Ma
,
F.
Meng
,
J.
He
,
Y.
Jia
, and
W.
Li
, “
Strain-induced ultrahigh electron mobility and thermoelectric figure of merit in monolayer α-Te
,”
ACS Appl. Mater. Interfaces
12
,
43901
43910
(
2020
).
38.
S.
Poncé
,
E. R.
Margine
,
C.
Verdi
, and
F.
Giustino
, “
EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions
,”
Comput. Phys. Commun.
209
,
116
133
(
2016
).
39.
G.
Fugallo
,
M.
Lazzeri
,
L.
Paulatto
, and
F.
Mauri
, “
Ab initio variational approach for evaluating lattice thermal conductivity
,”
Phys. Rev. B
88
,
045430
(
2013
).
40.
S.-I.
Tamura
, “
Isotope scattering of dispersive phonons in Ge
,”
Phys. Rev. B
27
,
858
(
1983
).
41.
J.
Sun
,
G.
Chen
,
S.
Li
, and
X.
Liu
, “
Light atomic mass induces low lattice thermal conductivity in Janus transition-metal dichalcogenides MSSe (M-Mo, W)
,”
J. Phys. Chem. C
127
,
17567
17574
(
2023
).
42.
S.
Li
,
Z.
Tong
, and
H.
Bao
, “
Resolving different scattering effects on the thermal and electrical transport in doped SnSe
,”
J. Appl. Phys.
126
,
025111
(
2019
).
43.
J.
Sun
,
S.
Li
,
Z.
Tong
,
C.
Shao
,
X.
Chen
,
Q.
Liu
,
Y.
Xiong
,
M.
An
, and
X.
Liu
, “
Weak effects of electron-phonon interactions on the lattice thermal conductivity of wurtzite GaN with high electron concentrations
,”
Phys. Rev. B
109
,
134308
(
2024
).
44.
T.
Kocabaş
,
M.
Keçeli
,
Á.
Vázquez-Mayagoitia
, and
C.
Sevik
, “
Gaussian approximation potentials for accurate thermal properties of two-dimensional materials
,”
Nanoscale
15
,
8772
8780
(
2023
).
You do not currently have access to this content.