The pressure-induced phase transition from hexagonal wurtzite (B4) to cubic rock salt (B1) in semiconductors is generally identified as an important displacement-type structural transition. Despite the important advancements shown in the literature, the B4–B1 transition boundaries have yet to be well determined due to the experiment's technical challenges, especially in the low-temperature region, resulting in a blank in the pressure–temperature (PT) phase diagrams and in the absence of experimental data on the Clapeyron slopes. Here, we probe the pressure-induced B4–B1 phase transition of some typical semiconductors (ZnO, GaN, AlN, and LiGaO2) at low temperatures (90–300 K) using a self-designed isothermal compression in situ Raman spectroscopy technique. We experimentally determine their B4–B1 phase boundaries at low temperature and obtain the corresponding negative Clapeyron slope parameters, with steeper slopes corresponding to larger entropy changes. Our findings provide insight into the pressure-induced B4–B1 transition in semiconductors and reveal the relationship between the bond energy and the Clapeyron slope in the B4–B1 transition.

1.
M. P.
Halsall
,
P.
Harmer
,
P. J.
Parbrook
, and
S. J.
Henley
, “
Raman scattering and absorption study of the high-pressure wurtzite to rocksalt phase transition of GaN
,”
Phys. Rev. B
69
,
235207
(
2004
).
2.
M.
Ueno
,
M.
Yoshida
,
A.
Onodera
,
O.
Shimomura
, and
K.
Takemura
, “
Stability of the wurtzite-type structure under high pressure: GaN and InN
,”
Phys. Rev. B
49
,
14
(
1994
).
3.
Y.
Yao
and
D. D.
Klug
, “
B4-B1 phase transition of GaN under isotropic and uniaxial compression
,”
Phys. Rev. B
88
,
014113
(
2013
).
4.
M.
Wilson
and
P. A.
Madden
, “
Transformations between tetrahedrally and octahedrally coordinated crystals: The wurtzite → rocksalt and blende → rocksalt mechanisms
,”
J. Phys.: Condens. Matter
14
,
4629
(
2002
).
5.
S.
Strite
and
H.
Morkoç
, “
GaN, AlN, and InN: A review
,”
J. Vac. Sci. Technol., B
10
,
1237
(
1992
).
6.
M.
Ueno
,
A.
Onodera
,
O.
Shimomura
, and
K.
Takemura
, “
X-ray observation of the structural phase transition of aluminum nitride under high pressure
,”
Phys. Rev. B
45
,
10123
(
1992
).
7.
P.
Perlin
,
C. J.
Carillon
,
J. P.
Itie
,
A.
San Miguel
,
I.
Grzegory
, and
A.
Polian
, “
Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure
,”
Phys. Rev. B
45
,
83
(
1992
).
8.
J.
Zhao
,
M.
Pu
,
S.
Liu
,
F.
Zhang
, and
L.
Lei
, “
Hysteresis effect in pressure-induced B4-B1 phase transition of ZnO
,”
Mater. Res. Express
6
,
126502
(
2019
).
9.
Z.
Horita
,
Y.
Tang
,
T.
Masuda
,
K.
Edalati
, and
Y.
Higo
, “
In situ synchrotron high-pressure X-ray analysis for ZnO with rocksalt structure
,”
Mater. Trans.
64
,
1585
(
2023
).
10.
L.
Bayarjargal
and
B.
Winkler
, “
High (pressure, temperature) phase diagrams of ZnO and AlN from second harmonic generation measurements
,”
Appl. Phys. Lett.
100
,
021909
(
2012
).
11.
B.
Sadovyi
,
M.
Wierzbowska
,
S.
Stelmakh
,
S.
Boccato
,
S.
Gierlotka
,
T.
Irifune
,
S.
Porowski
, and
I.
Grzegory
, “
Experimental and theoretical evidence of the temperature-induced wurtzite to rocksalt phase transition in GaN under high pressure
,”
Phys. Rev. B
102
,
235109
(
2020
).
12.
S.
Schmerler
and
J.
Kortus
, “
Ab initio study of AlN: Anisotropic thermal expansion, phase diagram, and high-temperature rocksalt to wurtzite phase transition
,”
Phys. Rev. B
89
,
064109
(
2014
).
13.
S.
Saib
and
N.
Bouarissa
, “
Structural properties of AlN from first principles calculations
,”
Eur. Phys. J. B
47
,
379
(
2005
).
14.
B.
Wei
,
L.
Lin
,
J.
Zhang
,
Z.
Zhan
,
Z.
Cheng
, and
J.
Jiang
, “
In situ measurement techniques using diamond anvil cell at high pressure–temperature conditions: A review
,”
Phys. Status Solidi RRL
18
,
2300469
(
2024
).
15.
H. K.
Mao
,
X. J.
Chen
,
Y.
Ding
,
B.
Li
, and
L.
Wang
, “
Solids, liquids, and gases under high pressure
,”
Rev. Mod. Phys.
90
,
015007
(
2018
).
16.
S. V.
Sinogeikin
,
J. S.
Smith
,
E.
Rod
,
C.
Lin
,
C.
Kenney-Benson
, and
G.
Shen
, “
Online remote control systems for static and dynamic compression and decompression using diamond anvil cells
,”
Rev. Sci. Instrum.
86
,
072209
(
2015
).
17.
J.
Yan
,
X.
Liu
,
F. A.
Gorelli
,
H.
Xu
,
H.
Zhang
,
H.
Hu
,
E.
Gregoryanz
, and
P.
Dalladay-Simpson
, “
Compression rate of dynamic diamond anvil cells from room temperature to 10 K
,”
Rev. Sci. Instrum.
93
,
063901
(
2022
).
18.
Y.
Wang
,
B.
Wu
,
J.
Liu
,
X.
Jia
,
Y.
Li
,
B.
Liu
,
L.
Fang
, and
L.
Lei
, “
Raman study of P–T phase diagram for U3O8
,”
J. Raman Spectrosc.
55
(9),
997
(
2024
).
19.
L.
Lei
,
Q. Q.
Tang
,
F.
Zhang
,
S.
Liu
,
B. B.
Wu
, and
C. Y.
Zhou
, “
Evidence for a new extended solid of nitrogen
,”
Chin. Phys. Lett.
37
,
068101
(
2020
).
20.
C.
Fan
,
S.
Liu
,
J.
Liu
,
B.
Wu
,
Q.
Tang
,
Y.
Tao
,
M.
Pu
,
F.
Zhang
,
J.
Li
,
X.
Wang
,
D.
He
,
C.
Zhou
, and
L.
Lei
, “
Evidence for a high-pressure isostructural transition in nitrogen
,”
Chin. Phys. Lett.
39
,
026401
(
2022
).
21.
F.
Datchi
,
A.
Dewaele
,
P.
Loubeyre
,
R.
Letoullec
,
Y.
Le Godec
, and
B.
Canny
, “
Optical pressure sensors for high-pressure–high-temperature studies in a diamond anvil cell
,”
High Press. Res.
27
,
447
(
2007
).
22.
B.
Wu
,
L.
Lei
,
J.
Liu
, and
Y.
Tao
, “
Observation of exciton-vibron coupling in cold dense nitrogen
,”
Research Square
(
2024
).
23.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T. A.
Arias
, and
J. D.
Joannopoulos
, “
Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients
,”
Rev. Mod. Phys.
64
,
1045
(
1992
).
24.
B.
Delley
, “
An all‐electron numerical method for solving the local density functional for polyatomic molecules
,”
J. Chem. Phys.
92
,
508
(
1990
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
26.
B.
Delley
, “
From molecules to solids with the DMol3 approach
,”
J. Chem. Phys.
113
,
7756
(
2000
).
27.
H.
Xia
,
Q.
Xia
, and
A. L.
Ruoff
, “
High-pressure structure of gallium nitride: Wurtzite-to-rocksalt phase transition
,”
Phys. Rev. B
47
,
12925
(
1993
).
28.
S.
Desgreniers
, “
High-density phases of ZnO: Structural and compressive parameters
,”
Phys. Rev. B
58
,
14102
(
1998
).
29.
H.
Yu
,
F.
Peng
,
H.
Liang
,
S.
Guan
,
L.
Tan
,
Z.
Xiong
,
X.
Xiang
,
Q.
Li
,
L.
Lei
, and
D.
He
, “
Pressure-induced structural phase transformation and yield strength of AlN
,”
J. Phys. Chem. C
123
,
28437
(
2019
).
30.
L.
Lei
,
T.
Irifune
,
T.
Shinmei
,
H.
Ohfuji
, and
L.
Fang
, “
Cation order–disorder phase transitions in LiGaO2: Observation of the pathways of ternary wurtzite under high pressure
,”
J. Appl. Phys.
108
,
083531
(
2010
).
31.
A. N.
Baranov
,
P. S.
Sokolov
, and
V. L.
Solozhenko
, “
ZnO under pressure: From nanoparticles to single crystals
,”
Crystals
12
,
744
(
2022
).
32.
H.
Karzel
,
W.
Potzel
,
M.
Köfferlein
,
W.
Schiessl
,
M.
Steiner
,
U.
Hiller
,
G. M.
Kalvius
,
D. W.
Mitchell
,
T. P.
Das
,
P.
Blaha
,
K.
Schwarz
, and
M. P.
Pasternak
, “
Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures
,”
Phys. Rev. B
53
,
11425
(
1996
).
33.
A.
Segura
,
J. A.
Sans
,
F. J.
Manjón
,
A.
Muñoz
, and
M. J.
Herrera-Cabrera
, “
Optical properties and electronic structure of rock-salt ZnO under pressure
,”
Appl. Phys. Lett.
83
,
278
(
2003
).
34.
T.
Mashimo
,
M.
Uchino
,
A.
Nakamura
,
T.
Kobayashi
,
E.
Takasawa
,
T.
Sekine
,
Y.
Noguchi
,
H.
Hikosaka
,
K.
Fukuoka
, and
Y.
Syono
, “
Yield properties, phase transition, and equation of state of aluminum nitride (AlN) under shock compression up to 150 GPa
,”
J. Appl. Phys.
86
,
6710
(
1999
).
35.
L.
Bayarjargal
,
L.
Wiehl
, and
B.
Winkler
, “
Influence of grain size, surface energy, and deviatoric stress on the pressure-induced phase transition of ZnO and AlN
,”
High Press. Res.
33
,
642
(
2013
).
36.
L.
Lei
,
H.
Ohfuji
,
J.
Qin
,
X.
Zhang
,
F.
Wang
, and
T.
Irifune
, “
High-pressure Raman spectroscopy study of LiGaO2
,”
Solid State Commun.
164
,
6
(
2013
).
37.
Q.
Hu
,
X.
Yan
,
L.
Lei
,
Q.
Wang
,
L.
Feng
,
L.
Qi
,
L.
Zhang
,
F.
Peng
,
H.
Ohfuji
, and
D.
He
, “
Pressure induced solid-solid reconstructive phase transition in LiGaO2 dominated by elastic strain
,”
Phys. Rev. B
97
,
014106
(
2018
).
38.
C.
Pinquier
,
F.
Demangeot
,
J.
Frandon
,
J. C.
Chervin
,
A.
Polian
,
B.
Couzinet
,
P.
Munsch
,
O.
Briot
,
S.
Ruffenach
,
B.
Gil
, and
B.
Maleyre
, “
Raman scattering study of wurtzite and rocksalt InN under high pressure
,”
Phys. Rev. B
73
,
115211
(
2006
).
39.
J.
Ibáñez
,
R.
Oliva
,
F. J.
Manjón
,
A.
Segura
,
T.
Yamaguchi
,
Y.
Nanishi
,
R.
Cuscó
, and
L.
Artús
, “
High-pressure lattice dynamics in wurtzite and rocksalt indium nitride investigated by means of Raman spectroscopy
,”
Phys. Rev. B
88
,
115202
(
2013
).
40.
K.
Kunc
,
A.
Polian
,
F.
Demangeot
, and
O.
Briot
, “
Phonon signature of the high-pressure rocksalt phase of InN
,”
Phys. Status Solidi B
252
,
2104
(
2015
).
41.
Y.
Zhang
,
P.
Franke
,
D.
Li
, and
H. J.
Seifert
, “
Lattice stability of metastable AlN and wurtzite-to-rock-salt structural transformation by CALPHAD modeling
,”
Mater. Chem. Phys.
184
,
233
(
2016
).
42.
A. M.
Alvertis
,
R.
Pandya
,
L. A.
Muscarella
,
N.
Sawhney
,
M.
Nguyen
,
B.
Ehrler
,
A.
Rao
,
R. H.
Friend
,
A. W.
Chin
, and
B.
Monserrat
, “
Impact of exciton delocalization on exciton-vibration interactions in organic semiconductors
,”
Phys. Rev. B
102
,
081122
(
2020
).
43.
F.
Decremps
, “
New phase boundary and high-pressure thermoelasticity of ZnO
,”
Eur. Lett.
51
,
268
(
2000
).
44.
L. H.
Shen
,
X. F.
Li
,
Y. M.
Ma
,
K. F.
Yang
,
W. W.
Lei
,
Q. L.
Cui
, and
G. T.
Zou
, “
Pressure-induced structural transition in AlN nanowires
,”
Appl. Phys. Lett.
89
,
141903
(
2006
).
45.
L. H.
Shen
,
Q. L.
Cui
,
Y. M.
Ma
,
Q. J.
Li
,
Y. M.
Ma
,
B. B.
Liu
, and
T.
Cui
, “
Raman scattering study of AlN nanowires under high pressure
,”
J. Phys. Chem. C
114
,
8241
(
2010
).
46.
Y. R.
Luo
,
Comprehensive Handbook of Chemical Bond Energies
(
CRC Press
,
Boca Raton, FL
,
2007
).
You do not currently have access to this content.