Liquid marble (LM) is a droplet covered with jammed low-wettability fine particles, which exhibits non-sticking to contacting media while keeping its fluid reconfigurability. While the LM facilitated the handling of the droplet, LM breaks down upon squeezing, which limits the robust handling. Here, we show that LM exhibits high compression stability when the jammed particles distort the liquid surface to form sub- to single-micron roughness. We find that the particle layers' distortion increases with the evaporation of the inner liquid. Thus, we regulated the evaporation degree of the droplet by varying the mixing ratio of the nonvolatile and volatile liquids. First, we show the regulation of the mixing ratio and its effect on the equilibrium LM static shape and particle layer structure. Then, the effect of the LMs' surface structure on their mechanical response is explored. When 90% of the inner liquid is evaporated, the submicrometer wrinkle structure appears on the LM surface. We name the LM with the wrinkle structure “wrinkled liquid marble (WLM).” The WLM exhibited high compression stability and significantly higher resilience force than the droplet one. We believe this work helps the practical use of the LMs by improving their mechanical stability. Moreover, the fundamental understanding of the particle layer stability at the interface can be advanced.

1.
P.
Aussillous
and
D.
Quéré
, “
Liquid marbles
,”
Nature
411
(
6840
),
924
927
(
2001
).
2.
M.
Tenjimbayashi
,
T.
Mouterde
,
P. K.
Roy
, and
K.
Uto
, “
Liquid marbles: Review of recent progress in physical properties, formation techniques, and lab-in-a-marble applications in microreactors and biosensors
,”
Nanoscale
15
(
47
),
18980
18998
(
2023
).
3.
S.
Fujii
,
S. I.
Yusa
, and
Y.
Nakamura
, “
Stimuli-responsive liquid marbles: Controlling structure, shape, stability, and motion
,”
Adv. Funct. Mater.
26
(
40
),
7206
7223
(
2016
).
4.
J.
Saczek
,
X.
Yao
,
V.
Zivkovic
,
M.
Mamlouk
,
D.
Wang
,
S. S.
Pramana
, and
S.
Wang
, “
Long-lived liquid marbles for green applications
,”
Adv. Funct. Mater.
31
(
35
),
1
22
(
2021
).
5.
E.
Sato
,
M.
Yuri
,
S.
Fujii
,
T.
Nishiyama
,
Y.
Nakamura
, and
H.
Horibe
, “
Liquid marbles as a micro-reactor for efficient radical alternating copolymerization of diene monomer and oxygen
,”
Chem. Commun.
51
(
97
),
17241
17244
(
2015
).
6.
Z.
Xin
and
T.
Skrydstrup
, “
Liquid marbles: A promising and versatile platform for miniaturized chemical reactions
,”
Angew. Chem. Int. Ed.
58
(
35
),
11952
11954
(
2019
).
7.
J.
Tian
,
T.
Arbatan
,
X.
Li
, and
W.
Shen
, “
Liquid marble for gas sensing
,”
Chem. Commun.
46
(
26
),
4734
(
2010
).
8.
M.
Tenjimbayashi
,
S.
Yamamoto
, and
K.
Uto
, “
Drycells: Cell‐suspension micro liquid marbles for single‐cell picking
,”
Adv. Mater.
35
(
30
),
2300486
(
2023
).
9.
R. K.
Vadivelu
,
H.
Kamble
,
A.
Munaz
, and
N. T.
Nguyen
, “
Liquid marble as bioreactor for engineering three-dimensional toroid tissues
,”
Sci. Rep.
7
(
1
),
1
14
(
2017
).
10.
F.
Sarvi
,
K.
Jain
,
T.
Arbatan
,
P. J.
Verma
,
K.
Hourigan
,
M. C.
Thompson
,
W.
Shen
, and
P. P. Y.
Chan
, “
Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor
,”
Adv. Healthcare Mater.
4
(
1
),
77
86
(
2015
).
11.
M.
Tenjimbayashi
,
S.
Samitsu
, and
M.
Naito
, “
Simultaneous detection and repair of wetting defects in superhydrophobic coatings via Cassie–Wenzel transitions of liquid marbles
,”
Adv. Funct. Mater.
29
(
26
),
1
8
(
2019
).
12.
M.
Tenjimbayashi
and
S.
Fujii
, “
How liquid marbles break down: Direct evidence for two breakage scenarios
,”
Small
17
(
37
),
1
7
(
2021
).
13.
C.
Fullarton
,
T. C.
Draper
,
N.
Phillips
,
R.
Mayne
,
B. P. J.
De Lacy Costello
, and
A.
Adamatzky
, “
Evaporation, lifetime, and robustness studies of liquid marbles for collision-based computing
,”
Langmuir
34
(
7
),
2573
2580
(
2018
).
14.
A.
Tosun
and
H. Y.
Erbil
, “
Evaporation rate of PTFE liquid marbles
,”
Appl. Surf. Sci.
256
(
5
),
1278
1283
(
2009
).
15.
M.
Dandan
and
H. Y.
Erbil
, “
Evaporation rate of graphite liquid marbles: Comparison with water droplets
,”
Langmuir
25
(
14
),
8362
8367
(
2009
).
16.
P.
Singha
,
C. H.
Ooi
,
N. K.
Nguyen
,
K. R.
Sreejith
,
J.
Jin
, and
N. T.
Nguyen
, “
Capillarity: Revisiting the fundamentals of liquid marbles
,”
Microfluid. Nanofluid.
24
(
10
),
1
15
(
2020
).
17.
U.
Cengiz
and
H. Y.
Erbil
, “
The lifetime of floating liquid marbles: The influence of particle size and effective surface tension
,”
Soft Matter
9
(
37
),
8980
8991
(
2013
).
18.
Y.
Rane
,
E.
Foster
,
M.
Moradiafrapoli
, and
J. O.
Marston
, “
Compressive deformation of liquid marbles
,”
Powder Technol.
338
,
7
16
(
2018
).
19.
Y.
Asaumi
,
M.
Rey
,
K.
Oyama
,
N.
Vogel
,
T.
Hirai
,
Y.
Nakamura
, and
S.
Fujii
, “
Effect of stabilizing particle size on the structure and properties of liquid marbles
,”
Langmuir
36
(
44
),
13274
13284
(
2020
).
20.
Z.
Liu
,
Y.
Zhang
,
C.
Chen
,
T.
Yang
,
J.
Wang
,
L.
Guo
,
P.
Liu
, and
T.
Kong
, “
Larger stabilizing particles make stronger liquid marble
,”
Small
15
(
3
),
1
5
(
2019
).
21.
S.
Azizian
,
S.
Fujii
,
M.
Kasahara
,
H. J.
Butt
, and
M.
Kappl
, “
Effect of particle morphology on mechanical properties of liquid marbles
,”
Adv. Powder Technol.
30
(
2
),
330
335
(
2019
).
22.
E.
Bormashenko
,
R.
Pogreb
,
G.
Whyman
,
A.
Musin
,
Y.
Bormashenko
, and
Z.
Barkay
, “
Shape, vibrations, and effective surface tension of water marbles
,”
Langmuir
25
(
4
),
1893
1896
(
2009
).
23.
M.
Tenjimbayashi
,
Y.
Watanabe
,
Y.
Nakamura
, and
M.
Naito
, “
Exceptional robustness and self‐reconfigurability of liquid marbles on superhydrophobic substrate
,”
Adv. Mater. Interfaces
7
(
11
),
2000160
(
2020
).
24.
M.
Tenjimbayashi
and
R.
Tamate
, “
Particulate gel liquid marbles
,”
J. Mater. Chem. A
12
(
27
),
16343
16349
(
2024
).
25.
X.
Li
,
Y.
Wang
,
Y.
Yang
,
S.
Wang
,
D.
Zang
, and
X.
Geng
, “
Dynamic behavior of droplets under interfacial jamming of nanoparticles
,”
Appl. Phys. Lett.
113
(
13
),
133702
(
2018
).
26.
M.
Tenjimbayashi
and
M.
Naito
, “
Bioinspired multi‐transformability of superhydrophobic nano‐magnetite swarm for adaptive object transportation
,”
Adv. Funct. Mater.
32
(
32
),
2204681
(
2022
).
27.
X.
Li
,
Y.
Wang
,
J.
Huang
,
Y.
Yang
,
R.
Wang
,
X.
Geng
, and
D.
Zang
, “
Monolayer nanoparticle-covered liquid marbles derived from a sol-gel coating
,”
Appl. Phys. Lett.
111
(
26
),
261604
(
2017
).
28.
X.
Li
,
X.
Pang
,
H.
Jiang
,
M.
Duan
,
H.
Liu
,
Z.
Yang
,
Y.
Xi
, and
T. P.
Russell
, “
Open millifluidics based on powder-encased channels
,”
Proc. Natl. Acad. Sci. U. S. A.
120
(
28
),
2017
(
2023
).
29.
J.
Niu
,
W.
Liu
,
J. X.
Li
,
X.
Pang
,
Y.
Liu
,
C.
Zhang
,
K.
Yue
,
Y.
Zhou
,
F.
Xu
,
X.
Li
, and
F.
Li
, “
Machining water through laser cutting of nanoparticle-encased water pancakes
,”
Nat. Commun.
14
(
1
),
3853
(
2023
).
30.
H.
Liu
,
X.
Pang
,
M.
Duan
,
Z.
Yang
,
T. P.
Russell
, and
X.
Li
, “
A simple route for open fluidic devices with particle walls
,”
Adv. Mater.
37
,
1
12
(
2025
).
31.
W. K.
Lee
,
W. B.
Jung
,
S. R.
Nagel
, and
T. W.
Odom
, “
Stretchable superhydrophobicity from monolithic, three-dimensional hierarchical wrinkles
,”
Nano Lett.
16
(
6
),
3774
3779
(
2016
).
32.
T.
Wen
,
T.
Ma
,
J.
Qian
,
Z.
Song
,
X.
Jiang
, and
Y.
Yao
, “
Phase-transition-induced dynamic surface wrinkle pattern on gradient photo-crosslinking liquid crystal elastomer
,”
Nat. Commun.
15
(
1
),
10821
(
2024
).
33.
S. V.
Slavov
,
A. R.
Sanger
, and
K. T.
Chuang
, “
Mechanism of silation of silica with hexamethyldisilazane
,”
J. Phys. Chem. B
104
(
5
),
983
989
(
2000
).
34.
S. E.
Orchard
, “
Light scattering by spherical particles: Radiation pressure, asymmetry factor, and extinction cross section
,”
J. Opt. Soc. Am.
55
(
9
),
1190
(
1965
).
35.
A.
Gallo
,
F.
Tavares
,
R.
Das
, and
H.
Mishra
, “
How particle-particle and liquid-particle interactions govern the fate of evaporating liquid marbles
,”
Soft Matter
17
(
33
),
7628
7644
(
2021
).
36.
S.
Nikravesh
,
D.
Ryu
, and
Y.-L.
Shen
, “
Surface wrinkling versus global buckling instabilities in thin film-substrate systems under biaxial loading: Direct 3D numerical simulations
,”
Adv. Theory Simul.
5
(
9
),
1
13
(
2022
).
37.
R.
Huang
,
C. M.
Stafford
, and
B. D.
Vogt
, “
Wrinkling of ultrathin polymer films
,”
MRS Proc.
924
,
1
6
(
2006
).
38.
V.
Trappe
,
V.
Prasad
,
L.
Cipelletti
,
P. N.
Segre
, and
D. A.
Weitz
, “
Jamming phase diagram for attractive particles
,”
Nature
411
(
6839
),
772
775
(
2001
).
39.
S.
Asare-Asher
,
J. N.
Connor
, and
R.
Sedev
, “
Elasticity of liquid marbles
,”
J. Colloid Interface Sci.
449
,
341
346
(
2015
).
40.
H.
Butt
,
K.
Graf
, and
M.
Kappl
,
Physics and Chemistry of Interfaces
(Wiley-VCH,
2003
), pp.
10
11
, ISBN:9783527404131.
You do not currently have access to this content.