Quantum memory, serving as a crucial device for storing and releasing quantum states, holds significant importance in long-distance quantum communications. To date, quantum memories have been realized in many different systems. However, most of them have complex structures and high cost. Besides, it is not easy to simultaneously achieve both high storage efficiency and fidelity. In this paper, we experimentally demonstrate a low-cost optical quantum memory with high efficiency and high fidelity, by utilizing a butterfly-shaped cavity consisting of one polarization beam splitter, two reflecting mirrors, and one pockels cell crystal. In order to quantify the quality of the quantum memory, we carry out tomography measurements on the time-bin qubits encoded with weak coherent states after storage for N rounds. The storage efficiency per round can reach up to 95.0%, and the overall state fidelity can exceed 99.1%. It thus seems very promising for practical implementation in quantum communication and networks.

1.
C. H.
Bennett
and
G.
Brassard
, in
Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing
(IEEE, New York,
1984
), pp.
175
179
.
2.
H. K.
Lo
,
M.
Curty
, and
B.
Qi
, “
Measurement-device-independent quantum key distribution
,”
Phys. Rev. Lett.
108
,
130503
(
2012
).
3.
Y. H.
Zhou
,
Z. W.
Yu
, and
X. B.
Wang
, “
Making the decoy-state measurement-device-independent quantum key distribution practically useful
,”
Phys. Rev. A
93
,
042324
(
2016
).
4.
Y. M.
Xie
,
Y. S.
Lu
,
Z. B.
Chen
et al, “
Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference
,”
Prx Quantum
3
,
020315
(
2022
).
5.
H. T.
Zhu
,
Y. Z.
Huang
,
L. X.
You
et al, “
Experimental mode-pairing measurement-device-independent quantum key distribution without global phase locking
,”
Phys. Rev. Lett.
130
,
030801
(
2023
).
6.
L.
Zhou
,
J. P.
Lin
,
Z. L.
Yuan
et al, “
Experimental quantum communication overcomes the rate-loss limit without global phase tracking
,”
Phys. Rev. Lett.
130
,
250801
(
2023
).
7.
F.
Kaneda
,
F. H.
Xu
,
J.
Chapman
, and
P. G.
Kwiat
, “
Quantum-memory-assisted multi-photon generation for efficient quantum information processing
,”
Optica
4
,
1034
1037
(
2017
).
8.
T. B.
Pittman
and
J. D.
Franson
, “
Cyclical quantum memory for photonic qubits
,”
Phys. Rev. A
66
,
062302
(
2002
).
9.
M. S.
Sun
,
C. H.
Zhang
,
Q.
Wang
et al, “
Practical decoy-state memory-assisted measurement-device-independent quantum key distribution
,”
Phys. Rev. Appl.
20
,
024029
(
2023
).
10.
Y.-W.
Cho
,
G. T.
Campbell
,
J. L.
Everett
,
J.
Bernu
,
D. B.
Higginbottom
,
M. T.
Cao
,
J.
Geng
,
N. P.
Robins
,
P. K.
Lam
, and
B. C.
Buchler
, “
Highly efficient optical quantum memory with long coherence time in cold atoms
,”
Optica
3
,
100
107
(
2016
).
11.
C. Y.
Wang
,
Y.
Yu
,
F. L.
Li
et al, “
Efficient quantum memory of orbital angular momentum qubits in cold atoms
,”
Quantum Sci. Technol.
6
,
045008
(
2021
).
12.
P.
Drmota
,
D.
Main
, and
D. M.
Lucas
, “
Robust quantum memory in a trapped-ion quantum network node
,”
Phys. Rev. Lett.
130
,
090803
(
2023
).
13.
T. P.
Harty
,
D. T. C.
Allcock
,
D. M.
Lucas
et al, “
High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit
,”
Phys. Rev. Lett.
113
,
220501
(
2014
).
14.
J.-S.
Tang
,
Z.-Q.
Zhou
,
G.-C.
Guo
et al, “
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
,”
Nat. Commun.
6
,
8652
(
2015
).
15.
D.
Lago-Rivera
,
S.
Grandi
,
J. V.
Rakonjac
et al, “
Telecom-heralded entanglement between multimode solid-state quantum memories
,”
Nature
594
,
37
40
(
2021
).
16.
S.
Duranti
,
S.
Wengerowsky
,
L.
Feldmann
,
A.
Seri
,
B.
Casabone
, and
H.
de Riedmatten
, “
Efficient cavity-assisted storage of photonic qubits in a solid-state quantum memory
,”
Opt. Express
32
,
26884
26895
(
2024
).
17.
C.
Liu
,
T. X.
Zhu
,
G. C.
Guo
et al, “
On-demand quantum storage of photonic qubits in an on-chip waveguide
,”
Phys. Rev. Lett.
125
,
260504
(
2020
).
18.
Y.
Wang
,
J.
Li
,
S.
Zhang
et al, “
Efficient quantum memory for single-photon polarization qubits
,”
Nat. Photonics
13
,
346
351
(
2019
).
19.
P.
Vernaz-Gris
,
K.
Huang
, and
J.
Laurat
, “
Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble
,”
Nat. Commun.
9
,
363
(
2018
).
20.
Y. F.
Hsiao
,
P. J.
Tsai
,
I. A.
Yu
, et al, “
Highly efficient coherent optical memory based on electromagnetically induced transparency
,”
Phys. Rev. Lett.
120
,
183602
(
2018
).
21.
M. X.
Dong
,
W. H.
Zhang
,
B. S.
Shi
et al, “
Highly efficient storage of 25-dimensional photonic qudit in a cold-atom-based quantum memory
,”
Phys. Rev. Lett.
131
,
240801
(
2023
).
22.
C.
Li
,
N.
Jiang
,
Y.-K.
Wu
,
W.
Chang
,
Y.-F.
Pu
,
S.
Zhang
, and
L.-M.
Duan
, “
Quantum communication between multiplexed atomic quantum memories
,”
Phys. Rev. Lett.
124
,
240504
(
2020
).
23.
A.
Seri
,
D.
Lago-Rivera
,
H.
Riedmatten
et al, “
Quantum storage of frequency-multiplexed heralded single photons
,”
Phys. Rev. Lett.
123
,
080502
(
2019
).
24.
X. X.
Li
,
P.
Zhou
,
X. D.
Zhang
et al, “
Integrated optical quantum memory controlled by the electro-optic effect
,”
Phys. Rev. A
108
,
012614
(
2023
).
25.
C.
Ekici
,
Y. H.
Yu
,
Y. H.
Ding
et al, “
High-resolution single photon level storage of telecom light based on thin film lithium niobate photonics
,”
Adv. Quantum Technol.
8
,
2300195
(
2023
).
26.
I.
Goswami
,
M.
Mandal
, and
S.
Mukhopadhyay
, “
Alternative study of using electro-optic Pockels cell for massive reduction in the intensity of central frequency by multi-passing technique
,”
J. Opt.
51
,
379
385
(
2022
).
27.
G. M.
D'Ariano
and
M. G. A.
Paris
, “
Quantum tomography
,”
Adv. Imaging Electron Phys.
128
,
206
(
2003
).
28.
K. A. G.
Bonsma-Fisher
,
C.
Hnatovsky
,
B. J.
Sussman
et al, “
Fiber-integrated quantum memory for telecom light
,”
Phys. Rev. A
108
,
012606
(
2023
).
29.
D. C.
Liu
,
P. Y.
Li
,
G. C.
Guo
et al, “
On-demand storage of photonic qubits at telecom wavelengths
,”
Phys. Rev. Lett.
129
,
210501
(
2022
).
You do not currently have access to this content.