Organic–inorganic hybrid perovskite solar cells (PSCs) have shown tremendous promise due to their excellent optoelectronic properties and cost-efficient fabrication. However, the efficiency of traditional lead halide PSCs is approaching the Shockley–Queisser limit, prompting interest in tin-lead perovskite solar cells (Eg ≈ 1.25 eV) as a candidate for tandem configurations with the potential to surpass this limit. A key challenge lies in optimizing the hole transport layer (HTL), as widely used PEDOT:PSS suffers from high acidity and poor crystallinity, hindering device performance. In this work, we used a formic acid modification of PEDOT:PSS to enhance its conductivity, energy band alignment, and crystallinity. Acid treatment promotes proton transfer, reducing insulating PSS chains and improving phase separation, thereby facilitating efficient hole transport. Tin–lead perovskite films fabricated on formic acid-treated PEDOT:PSS (Fa-PEDOT:PSS) exhibit improved crystallinity, larger grain size, and reduced defect density. Devices incorporating Fa-PEDOT:PSS demonstrate enhanced photovoltaic performance, achieving a power conversion efficiency (PCE) of 21.87% with reduced hysteresis and excellent stability, retaining ∼90% of initial efficiency after 1600 h in an inert atmosphere. These findings highlight the potential of acid-treated PEDOT:PSS as an optimized HTL for tin–lead PSCs, paving the way for high-efficiency, environmentally friendly photovoltaic technologies.

1.
S.
Liu
,
J.
Li
,
W.
Xiao
,
R.
Chen
,
Z.
Sun
,
Y.
Zhang
,
X.
Lei
,
S.
Hu
,
M.
Kober-Czerny
,
J.
Wang
,
F.
Ren
,
Q.
Zhou
,
H.
Raza
,
Y.
Gao
,
Y.
Ji
,
S.
Li
,
H.
Li
,
L.
Qiu
,
W.
Huang
,
Y.
Zhao
,
B.
Xu
,
Z.
Liu
,
H. J.
Snaith
,
N.-G.
Park
, and
W.
Chen
, “
Buried interface molecular hybrid for inverted perovskite solar cells
,”
Nature
632
,
536
542
(
2024
).
2.
Z.
Liu
,
H.
Li
,
Z.
Chu
,
R.
Xia
,
J.
Wen
,
Y.
Mo
,
H.
Zhu
,
H.
Luo
,
X.
Zheng
,
Z.
Huang
,
X.
Luo
,
B.
Wang
,
X.
Zhang
,
G.
Yang
,
Z.
Feng
,
Y.
Chen
,
W.
Kong
,
J.
Gao
, and
H.
Tan
, “
Reducing perovskite/C60 interface losses via sequential interface engineering for efficient perovskite/silicon tandem solar cell
,”
Adv. Mater.
36
,
2308370
(
2023
).
3.
Q.
Jiang
,
D.
Rebollar
,
J.
Gong
,
E. L.
Piacentino
,
C.
Zheng
, and
T.
Xu
, “
Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films
,”
Angew. Chem. Int. Ed.
54
,
7617
7620
(
2015
).
4.
X.
Ji
,
Y.
Ding
,
L.
Bi
,
X.
Yang
,
J.
Wang
,
X.
Wang
,
Y.
Liu
,
Y.
Yan
,
X.
Zhu
,
J.
Huang
,
L.
Yang
,
Q.
Fu
,
A. K.-Y.
Jen
, and
L.
Lu
, “
Multifunctional buffer layer engineering for efficient and stable wide-bandgap perovskite and perovskite/silicon tandem solar cells
,”
Angew. Chem. Int. Ed.
63
,
e202407766
(
2024
).
5.
J.
Park
,
J.
Kim
,
H.-S.
Yun
,
M. J.
Paik
,
E.
Noh
,
H. J.
Mun
,
M. G.
Kim
,
T. J.
Shin
, and
S. I.
Seok
, “
Controlled growth of perovskite layers with volatile alkylammonium chlorides
,”
Nature
616
,
724
730
(
2023
).
6.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
, “
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
,”
J. Am. Chem. Soc.
131
,
6050
6051
(
2009
).
7.
J.
Jeong
,
M.
Kim
,
J.
Seo
,
H.
Lu
,
P.
Ahlawat
,
A.
Mishra
,
Y.
Yang
,
M. A.
Hope
,
F. T.
Eickemeyer
,
M.
Kim
,
Y. J.
Yoon
,
I. W.
Choi
,
B. P.
Darwich
,
S. J.
Choi
,
Y.
Jo
,
J. H.
Lee
,
B.
Walker
,
S. M.
Zakeeruddin
,
L.
Emsley
,
U.
Rothlisberger
,
A.
Hagfeldt
,
D. S.
Kim
,
M.
Grätzel
, and
J. Y.
Kim
, “
Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells
,”
Nature
592
,
381
385
(
2021
).
8.
S.
You
,
H.
Zeng
,
Y.
Liu
,
B.
Han
,
M.
Li
,
L.
Li
,
X.
Zheng
,
R.
Guo
,
L.
Luo
,
Z.
Li
,
C.
Zhang
,
R.
Liu
,
Y.
Zhao
,
S.
Zhang
,
Q.
Peng
,
T.
Wang
,
Q.
Chen
,
F. T.
Eickemeyer
,
B.
Carlsen
,
S. M.
Zakeeruddin
,
L.
Mai
,
Y.
Rong
,
M.
Grätzel
, and
X.
Li
, “
Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules
,”
Science
379
,
288
294
(
2023
).
9.
Z.
Zhang
,
L.
Qiao
,
K.
Meng
,
R.
Long
,
G.
Chen
, and
P.
Gao
, “
Rationalization of passivation strategies toward high-performance perovskite solar cells
,”
Chem. Soc. Rev.
52
,
163
195
(
2023
).
10.
Y.
Yao
,
P.
Hang
,
B.
Li
,
Z.
Hu
,
C.
Kan
,
J.
Xie
,
Y.
Wang
,
Y.
Zhang
,
D.
Yang
, and
X.
Yu
, “
Phase-stable wide-bandgap perovskites for four-terminal perovskite/silicon tandem solar cells with over 30% efficiency
,”
Small
18
,
e2203319
(
2022
).
11.
W.
Shockley
and
H. J.
Queisser
, “
Detailed balance limit of efficiency of p-n junction solar cells
,”
J. Appl. Phys.
32
,
510
519
(
1961
).
12.
D.
He
,
K.
Liu
,
Z.
Li
,
X.
Zhang
,
H.
Gao
,
Z.
Niu
,
T.
Cheng
,
G.
Ma
,
J.
Wang
,
F.
Lamberti
, and
Z.
He
, “
Synergistic passivation of buried interface and grain boundary of tin–lead mixed perovskite films for efficient solar cells
,”
Adv. Funct. Mater.
34
,
2411750
(
2024
).
13.
F.
Wang
,
X.
Jiang
,
H.
Chen
,
Y.
Shang
,
H.
Liu
,
J.
Wei
,
W.
Zhou
,
H.
He
,
W.
Liu
, and
Z.
Ning
, “
2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability
,”
Joule
2
,
2732
2743
(
2018
).
14.
Z.
Fang
,
Q.
Zeng
,
C.
Zuo
,
L.
Zhang
,
H.
Xiao
,
M.
Cheng
,
F.
Hao
,
Q.
Bao
,
L.
Zhang
,
Y.
Yuan
,
W.-Q.
Wu
,
D.
Zhao
,
Y.
Cheng
,
H.
Tan
,
Z.
Xiao
,
S.
Yang
,
F.
Liu
,
Z.
Jin
,
J.
Yan
, and
L.
Ding
, “
Perovskite-based tandem solar cells
,”
Sci. Bull.
66
,
621
636
(
2021
).
15.
J.
Wen
and
H.
Tan
, “
Present status and future prospects for monolithic all-perovskite tandem solar cells
,”
Sci. China Mater.
65
,
3353
3360
(
2022
).
16.
R.
Lin
,
Y.
Wang
,
Q.
Lu
,
B.
Tang
,
J.
Li
,
H.
Gao
,
Y.
Gao
,
H.
Li
,
C.
Ding
,
J.
Wen
,
P.
Wu
,
C.
Liu
,
S.
Zhao
,
K.
Xiao
,
Z.
Liu
,
C.
Ma
,
Y.
Deng
,
L.
Li
,
F.
Fan
, and
H.
Tan
, “
All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction
,”
Nature
620
,
994
1000
(
2023
).
17.
R.
Lin
,
K.
Xiao
,
Z.
Qin
,
Q.
Han
,
C.
Zhang
,
M.
Wei
,
M. I.
Saidaminov
,
Y.
Gao
,
J.
Xu
,
M.
Xiao
,
A.
Li
,
J.
Zhu
,
E. H.
Sargent
, and
H.
Tan
, “
Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink
,”
Nat. Energy
4
,
864
873
(
2019
).
18.
J.
Wen
,
Y.
Zhao
,
P.
Wu
,
Y.
Liu
,
X.
Zheng
,
R.
Lin
,
S.
Wan
,
K.
Li
,
H.
Luo
,
Y.
Tian
,
L.
Li
, and
H.
Tan
, “
Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells
,”
Nat. Commun.
14
,
7118
(
2023
).
19.
Y.
Zhang
,
C.
Li
,
H.
Zhao
,
Z.
Yu
,
X.
Tang
,
J.
Zhang
,
Z.
Chen
,
J.
Zeng
,
P.
Zhang
,
L.
Han
, and
H.
Chen
, “
Synchronized crystallization in tin-lead perovskite solar cells
,”
Nat. Commun.
15
,
6887
(
2024
).
20.
K.
Xiao
,
R.
Lin
,
Q.
Han
,
Y.
Hou
,
Z.
Qin
,
H. T.
Nguyen
,
J.
Wen
,
M.
Wei
,
V.
Yeddu
,
M. I.
Saidaminov
,
Y.
Gao
,
X.
Luo
,
Y.
Wang
,
H.
Gao
,
C.
Zhang
,
J.
Xu
,
J.
Zhu
,
E. H.
Sargent
, and
H.
Tan
, “
All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant
,”
Nat. Energy
5
,
870
880
(
2020
).
21.
R.
Lin
,
J.
Xu
,
M.
Wei
,
Y.
Wang
,
Z.
Qin
,
Z.
Liu
,
J.
Wu
,
K.
Xiao
,
B.
Chen
,
S. M.
Park
,
G.
Chen
,
H. R.
Atapattu
,
K. R.
Graham
,
J.
Xu
,
J.
Zhu
,
L.
Li
,
C.
Zhang
,
E. H.
Sargent
, and
H.
Tan
, “
All-perovskite tandem solar cells with improved grain surface passivation
,”
Nature
603
,
73
78
(
2022
).
22.
H.
Sun
,
K.
Xiao
,
H.
Gao
,
C.
Duan
,
S.
Zhao
,
J.
Wen
,
Y.
Wang
,
R.
Lin
,
X.
Zheng
,
H.
Luo
,
C.
Liu
,
P.
Wu
,
W.
Kong
,
Z.
Liu
,
L.
Li
, and
H.
Tan
, “
Scalable solution-processed hybrid electron transport layers for efficient all-perovskite tandem solar modules
,”
Adv. Mater.
36
,
2308706
(
2024
).
23.
G. E.
Eperon
,
T.
Leijtens
,
K. A.
Bush
,
R.
Prasanna
,
T.
Green
,
J. T.-W.
Wang
,
D. P.
McMeekin
,
G.
Volonakis
,
R. L.
Milot
,
R.
May
,
A.
Palmstrom
,
D. J.
Slotcavage
,
R. A.
Belisle
,
J. B.
Patel
,
E. S.
Parrott
,
R. J.
Sutton
,
W.
Ma
,
F.
Moghadam
,
B.
Conings
,
A.
Babayigit
,
H.-G.
Boyen
,
S.
Bent
,
F.
Giustino
,
L. M.
Herz
,
M. B.
Johnston
,
M. D.
McGehee
, and
H. J.
Snaith
, “
Perovskite-perovskite tandem photovoltaics with optimized band gaps
,”
Science
354
,
861
865
(
2016
).
24.
A.
Rajagopal
,
L.
Po Wei
,
C.-C.
Chueh
,
Z.
Yang
, and
A.
Jen
, “
Defect passivation via graded fullerene heterojunction in low bandgap Pb-Sn binary perovskite photovoltaics
,”
ACS Energy Lett.
2
,
2531
(
2017
).
25.
H.
Wang
,
J.
He
,
H.
Xiang
,
R.
Ran
,
W.
Zhou
,
W.
Wang
, and
Z.
Shao
, “
Additive Engineering for mixed lead–tin narrow-band-gap perovskite solar cells: Recent advances and perspectives
,”
Energy Fuels
37
,
6401
6423
(
2023
).
26.
M. M.
Tavakoli
,
S. M.
Zakeeruddin
,
M.
Grätzel
, and
Z.
Fan
, “
Large-grain tin-rich perovskite films for efficient solar cells via metal alloying technique
,”
Adv. Mater.
30
,
1705998
(
2018
).
27.
J.
Zhu
,
Y.
Xu
,
Y.
Luo
,
J.
Luo
,
R.
He
,
C.
Wang
,
Y.
Wang
,
K.
Wei
,
Z.
Yi
,
Z.
Gao
,
J.
Wang
,
J.
You
,
Z.
Zhang
,
H.
Lai
,
S.
Ren
,
X.
Liu
,
C.
Xiao
,
C.
Chen
,
J.
Zhang
,
F.
Fu
, and
D.
Zhao
, “
Custom-tailored hole transport layer using oxalic acid for high-quality tin-lead perovskites and efficient all-perovskite tandems
,”
Sci. Adv.
10
,
eadl2063
(
2024
).
28.
T.
Ma
,
H.
Wang
,
Z.
Wu
,
Y.
Zhao
,
C.
Chen
,
X.
Yin
,
L.
Hu
,
F.
Yao
,
Q.
Lin
,
S.
Wang
,
D.
Zhao
,
X.
Li
, and
C.
Wang
, “
Hole transport layer-free low-bandgap perovskite solar cells for efficient all-perovskite tandems
,”
Adv. Mater.
36
,
e2308240
(
2024
).
29.
S.
Lee
,
J.
Ryu
,
D.-G.
Lee
,
P.
Pandey
,
C.-M.
Oh
,
I.-W.
Hwang
,
S.
Cho
,
S.
Yoon
,
J.-Y.
Lee
, and
D.-W.
Kang
, “
Unprecedented inorganic HTL-based MA-free Sn–Pb perovskite photovoltaics with an efficiency over 23%
,”
Energy Environ. Sci.
17
,
8140
8150
(
2024
).
30.
J.
Zhou
,
L.
Tan
,
Y.
Liu
,
H.
Li
,
X.
Liu
,
M.
Li
,
S.
Wang
,
Y.
Zhang
,
C.
Jiang
,
R.
Hua
,
W.
Tress
,
S.
Meloni
, and
C.
Yi
, “
Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material
,”
Joule
8
,
1691
(
2024
).
31.
Y.
Qi
,
M.
Almtiri
,
H.
Giri
,
S.
Jha
,
G.
Ma
,
A. K.
Shaik
,
Q.
Zhang
,
N.
Pradhan
,
X.
Gu
,
N. I.
Hammer
,
D.
Patton
,
C.
Scott
, and
Q.
Dai
, “
Evaluation of the passivation effects of PEDOT:PSS on inverted perovskite solar cells
,”
Adv. Energy Mater.
12
,
2202713
(
2022
).
32.
D. A.
Mengistie
,
M. A.
Ibrahem
,
P.-C.
Wang
, and
C.-W.
Chu
, “
Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells
,”
ACS Appl. Mater. Interfaces
6
,
2292
2299
(
2014
).
33.
X.
Wang
,
A. K. K.
Kyaw
,
C.
Yin
,
F.
Wang
,
Q.
Zhu
,
T.
Tang
,
P. I.
Yee
, and
J.
Xu
, “
Enhancement of thermoelectric performance of PEDOT:PSS films by post-treatment with a superacid
,”
RSC Adv.
8
,
18334
18340
(
2018
).
34.
Z.
Fan
,
P.
Li
,
D.
Du
, and
J.
Ouyang
, “
Significantly enhanced thermoelectric properties of PEDOT:PSS films through sequential post-treatments with common acids and bases
,”
Adv. Energy Mater.
7
,
1602116
(
2017
).
35.
C.
Liu
,
R.
Lin
,
Y.
Wang
,
H.
Gao
,
P.
Wu
,
H.
Luo
,
X.
Zheng
,
B.
Tang
,
Z.
Huang
,
H.
Sun
,
S.
Zhao
,
Y.
Guo
,
J.
Wen
,
F.
Fan
, and
H.
Tan
, “
Efficient all-perovskite tandem solar cells with low-optical-loss carbazolyl interconnecting layers
,”
Angew. Chem. Int. Ed. Engl.
62
,
e202313374
(
2023
).
36.
L.
Zhang
,
Q.
Kang
,
Y.
Song
,
D.
Chi
,
S.
Huang
, and
G.
He
, “
Grain boundary passivation with Dion–Jacobson phase perovskites for high-performance Pb–Sn mixed narrow-bandgap perovskite solar cells
,”
Sol. RRL
5
,
2000681
(
2021
).
37.
X.
Gong
,
Q.
Sun
,
S.
Liu
,
P.
Liao
,
Y.
Shen
,
C.
Grätzel
,
S. M.
Zakeeruddin
,
M.
Grätzel
, and
M.
Wang
, “
Highly efficient perovskite solar cells with gradient bilayer electron transport materials
,”
Nano Lett.
18
,
3969
3977
(
2018
).
38.
D.
Yu
,
M.
Pan
,
G.
Liu
,
X.
Jiang
,
X.
Wen
,
W.
Li
,
S.
Chen
,
W.
Zhou
,
H.
Wang
,
Y.
Lu
,
M.
Ma
,
Z.
Zang
,
P.
Cheng
,
Q.
Ji
,
F.
Zheng
, and
Z.
Ning
, “
Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells
,”
Nat. Energy
9
,
298
(
2024
).
39.
G.
Li
,
C.
Wang
,
S.
Fu
,
W.
Zheng
,
W.
Shen
,
P.
Jia
,
L.
Huang
,
S.
Zhou
,
J.
Zhou
,
C.
Wang
,
H.
Guan
,
Y.
Zhou
,
X.
Zhang
,
D.
Pu
,
H.
Fang
,
Q.
Lin
,
W.
Ai
,
W.
Chen
,
G.
Zeng
,
T.
Wang
,
P.
Qin
,
G.
Fang
, and
W.
Ke
, “
Boosting all-perovskite tandem solar cells by revitalizing the buried tin-lead perovskite interface
,”
Adv. Mater.
36
,
2401698
(
2024
).
40.
W.
Chai
,
L.
Li
,
W.
Zhu
,
D.
Chen
,
L.
Zhou
,
H.
Xi
,
J.
Zhang
,
C.
Zhang
, and
Y.
Hao
, “
Graded heterojunction improves wide-bandgap perovskite for highly efficient 4-terminal perovskite/silicon tandem solar cells
,”
Research
6
,
0196
(
2023
).
41.
S.-H.
Turren-Cruz
,
J.
Pascual
,
S.
Hu
,
J.
Sanchez-Diaz
,
S.
Galve-Lahoz
,
W.
Liu
,
W.
Hempel
,
V. S.
Chirvony
,
J. P.
Martinez-Pastor
,
P. P.
Boix
,
A.
Wakamiya
, and
I.
Mora-Seró
, “
Multicomponent approach for stable methylammonium-free tin–lead perovskite solar cells
,”
ACS Energy Lett.
9
,
432
441
(
2024
).
42.
G.
Xu
,
P.
Bi
,
S.
Wang
,
R.
Xue
,
J.
Zhang
,
H.
Chen
,
W.
Chen
,
X.
Hao
,
Y.
Li
, and
Y.
Li
, “
Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss
,”
Adv. Funct. Mater.
28
,
1804427
(
2018
).
43.
V. K.
Mishra
,
S. B.
Rai
,
B. P.
Asthana
,
O.
Parkash
, and
D.
Kumar
, “
Effect of annealing on nanoparticles of hydroxyapatite synthesized via microwave irradiation: Structural and spectroscopic studies
,”
Ceram. Int.
40
,
11319
11328
(
2014
).
44.
X.
Yu
,
Z.
Fang
,
S.
Lin
,
S.
Wu
,
M.
Fang
,
H.
Xie
,
D.
Kong
, and
C.
Zhou
, “
Polyvinyl pyrrolidone induced ‘Confinement effect’ on PbI2 and the improvement on crystallization and thermal stability of perovskite
,”
Small
20
,
2306101
(
2024
).
45.
G.
Li
,
Z.
Su
,
L.
Canil
,
D.
Hughes
,
M. H.
Aldamasy
,
J.
Dagar
,
S.
Trofimov
,
L.
Wang
,
W.
Zuo
,
J. J.
Jerónimo-Rendon
,
M. M.
Byranvand
,
C.
Wang
,
R.
Zhu
,
Z.
Zhang
,
F.
Yang
,
G.
Nasti
,
B.
Naydenov
,
W. C.
Tsoi
,
Z.
Li
,
X.
Gao
,
Z.
Wang
,
Y.
Jia
,
E.
Unger
,
M.
Saliba
,
M.
Li
, and
A.
Abate
, “
Highly efficient p-i-n perovskite solar cells that endure temperature variations
,”
Science
379
,
399
403
(
2023
).
46.
J.
Wang
,
M. A.
Uddin
,
B.
Chen
,
X.
Ying
,
Z.
Ni
,
Y.
Zhou
,
M.
Li
,
M.
Wang
,
Z.
Yu
, and
J.
Huang
, “
Enhancing photostability of Sn-Pb perovskite solar cells by an alkylammonium pseudo-halogen additive
,”
Adv. Energy Mater.
13
,
2204115
(
2023
).
47.
C. C.
Stoumpos
,
C. D.
Malliakas
, and
M. G.
Kanatzidis
, “
semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties
,”
Inorg. Chem.
52
,
9019
9038
(
2013
).
48.
J.
Kurisinkal Pious
,
Y.
Zwirner
,
H.
Lai
,
S.
Olthof
,
Q.
Jeangros
,
E.
Gilshtein
,
R. K.
Kothandaraman
,
K.
Artuk
,
P.
Wechsler
,
C.
Chen
,
C. M.
Wolff
,
D.
Zhao
,
A. N.
Tiwari
, and
F.
Fu
, “
Revealing the role of tin fluoride additive in narrow bandgap Pb-Sn perovskites for highly efficient flexible all-perovskite tandem cells
,”
ACS Appl. Mater. Interfaces
15
,
10150
10157
(
2023
).
49.
P.
Wu
,
D.
Thrithamarassery Gangadharan
,
M. I.
Saidaminov
, and
H.
Tan
, “
A roadmap for efficient and stable all-perovskite tandem solar cells from a chemistry perspective
,”
ACS Cent. Sci.
9
,
14
26
(
2023
).
50.
T.
Jiang
,
Z.
Chen
,
X.
Chen
,
X.
Chen
,
X.
Xu
,
T.
Liu
,
L.
Bai
,
D.
Yang
,
D.
Di
,
W. E. I.
Sha
,
H.
Zhu
, and
Y. M.
Yang
, “
Power conversion efficiency enhancement of low-bandgap mixed Pb–Sn perovskite solar cells by improved interfacial charge transfer
,”
ACS Energy Lett.
4
,
1784
1790
(
2019
).
51.
J.
Zhu
,
Y.
Luo
,
R.
He
,
C.
Chen
,
Y.
Wang
,
J.
Luo
,
Z.
Yi
,
J.
Thiesbrummel
,
C.
Wang
,
F.
Lang
,
H.
Lai
,
Y.
Xu
,
J.
Wang
,
Z.
Zhang
,
W.
Liang
,
G.
Cui
,
S.
Ren
,
X.
Hao
,
H.
Huang
,
Y.
Wang
,
F.
Yao
,
Q.
Lin
,
L.
Wu
,
J.
Zhang
,
M.
Stolterfoht
,
F.
Fu
, and
D.
Zhao
, “
A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems
,”
Nat. Energy
8
,
714
724
(
2023
).
52.
L.
Huang
,
H.
Cui
,
W.
Zhang
,
D.
Pu
,
G.
Zeng
,
Y.
Liu
,
S.
Zhou
,
C.
Wang
,
J.
Zhou
,
C.
Wang
,
H.
Guan
,
W.
Shen
,
G.
Li
,
T.
Wang
,
W.
Zheng
,
G.
Fang
, and
W.
Ke
, “
Efficient narrow-bandgap mixed tin-lead perovskite solar cells via natural tin oxide doping
,”
Adv. Mater.
35
,
2301125
(
2023
).
You do not currently have access to this content.