A dielectric material with a higher permittivity and a lower leakage is required to meet the demands of three-dimensional (3D) dynamic random access memory (DRAM). Current morphotropic phase boundary (MPB) behavior exhibits a higher permittivity but relatively high leakage. In this work, we propose a feasible approach to achieve MPB and low leakage by the charge balance effect in the doped HfO2-ZrO2 superlattice system. Our first-principles calculations reveal that the synergy effect of doping and oxygen vacancies can achieve lower phase transition barriers between polar and nonpolar phases, suggesting the formation of more MPB regions. Especially for Y dopant, it is more preferred due to the smallest transition barrier. Additionally, defect states arising from oxygen vacancies can be passivized at the charge balance state to enable large bandgap, suppressing leakage currents. This work provides a potential solution for a dielectric material with a higher permittivity and a lower leakage, paving the way for future 3D DRAM capacitors.

1.
H.
Sun
,
J.
Liu
,
R. S.
Anigundi
,
N.
Zheng
,
J.-Q.
Lu
,
K.
Rose
, and
T.
Zhang
,
IEEE Des. Test Comput.
26
(
5
),
36
(
2009
).
2.
A.
Belmonte
,
H.
Oh
,
N.
Rassoul
,
G.
Donadio
,
J.
Mitard
,
H.
Dekkers
,
R.
Delhougne
,
S.
Subhechha
,
A.
Chasin
, and
M.
Van Setten
,
presented at the 2020 IEEE International Electron Devices Meeting (IEDM)
, San Francisco, CA, USA,
2020
.
3.
R.
Anigundi
,
H.
Sun
,
J.-Q.
Lu
,
K.
Rose
, and
T.
Zhang
,
presented at the 2009 10th International Symposium on Quality Electronic Design
, San Jose, CA, USA,
2009
.
4.
E.
Gerritsen
,
N.
Emonet
,
C.
Caillat
,
N.
Jourdan
,
M.
Piazza
,
D.
Fraboulet
,
B.
Boeck
,
A.
Berthelot
,
S.
Smith
, and
P.
Mazoyer
,
Solid-State Electron.
49
(
11
),
1767
(
2005
).
5.
M.
Green
,
T.
Sorsch
,
G.
Timp
,
D.
Muller
,
B.
Weir
,
P.
Silverman
,
S.
Moccio
, and
Y.
Kim
,
Microelectron. Eng.
48
(
1–4
),
25
(
1999
).
6.
M. M.
Frank
,
presented at the 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)
, Helsinki, Finland,
2011
.
7.
P. K.
Park
and
S.-W.
Kang
,
Appl. Phys. Lett.
89
(
19
),
192905
(
2006
).
8.
M.-S.
Kim
,
Y.-D.
Ko
,
J.-H.
Hong
,
M.-C.
Jeong
,
J.-M.
Myoung
, and
I.
Yun
,
Appl. Surf. Sci.
227
(
1–4
),
387
(
2004
).
9.
J.-G.
Kang
,
Y.-I.
Kim
,
D. W.
Cho
, and
Y.
Sohn
,
Mater. Sci. Semicond. Process.
40
,
737
(
2015
).
10.
R.
Cava
,
W.
Peck
, Jr.
,
J.
Krajewski
,
G.
Roberts
,
B.
Barber
,
H.
O'Bryan
, and
P.
Gammel
,
Appl. Phys. Lett.
70
(
11
),
1396
(
1997
).
11.
J.
Müller
,
U.
Schröder
,
T.
Böscke
,
I.
Müller
,
U.
Böttger
,
L.
Wilde
,
J.
Sundqvist
,
M.
Lemberger
,
P.
Kücher
, and
T.
Mikolajick
,
J. Appl. Phys.
110
(
11
),
114113
(
2011
).
12.
W.
Banerjee
,
A.
Kashir
, and
S.
Kamba
,
Small
18
(
23
),
2107575
(
2022
).
13.
J.
Choi
,
Y.
Mao
, and
J.
Chang
,
Mater. Sci. Eng.: R: Rep.
72
(
6
),
97
(
2011
).
14.
K. V.
Lalitha
,
A. K.
Kalyani
, and
R.
Ranjan
,
Phys. Rev. B
90
(
22
),
224107
(
2014
).
15.
Y.
Yang
,
Y.
Ji
,
M.
Fang
,
Z.
Zhou
,
L.
Zhang
, and
X.
Ren
,
Phys. Rev. Lett.
123
(
13
),
137601
(
2019
).
16.
L.
Liu
,
C.
Jiang
,
X.
Yuan
,
Y.
Zhang
,
H.
Chen
, and
D.
Zhang
,
J. Materiomics
11
(
3
),
100922
(
2025
).
17.
S. S.
Cheema
,
N.
Shanker
,
L.-C.
Wang
,
C.-H.
Hsu
,
S.-L.
Hsu
,
Y.-H.
Liao
,
M.
San Jose
,
J.
Gomez
,
W.
Chakraborty
, and
W.
Li
,
Nature
604
(
7904
),
65
(
2022
).
18.
K.
Ni
,
A.
Saha
,
W.
Chakraborty
,
H.
Ye
,
B.
Grisafe
,
J.
Smith
,
G. B.
Rayner
,
S.
Gupta
, and
S.
Datta
,
presented at the 2019 IEEE International Electron Devices Meeting (IEDM)
, San Francisco, CA, USA,
2019
.
19.
S.
Oh
,
H.
Jang
, and
H.
Hwang
,
J. Appl. Phys.
133
(
15
),
154102
(
2023
).
20.
A.
Kashir
,
M. G.
Farahani
, and
H.
Hwang
,
Nanoscale
13
(
32
),
13631
(
2021
).
21.
A.
Chernikova
,
M.
Kozodaev
, and
A.
Markeev
,
Russ. J. Appl. Chem.
96
(
5
),
579
(
2023
).
22.
J.
Zhou
,
Z.
Zhou
,
L.
Jiao
,
X.
Wang
,
Y.
Kang
,
H.
Wang
,
K.
Han
,
Z.
Zheng
, and
X.
Gong
,
presented at the 2021 IEEE International Electron Devices Meeting (IEDM)
, San Francisco, CA, USA,
2021
.
23.
J.-M.
Lee
,
P.-H.
Choi
,
S.-K.
Kim
,
J.-H.
Oh
,
S.-H.
Shin
,
J.-Y.
Noh
,
H.-S.
Kim
, and
B.-D.
Choi
,
IEEE Trans. Electron Devices
65
(
11
),
4839
(
2018
).
24.
M.
Kang
,
Y.
Peng
,
W.
Xiao
,
Y.
Zhang
,
Z.
Wang
,
P.
Du
,
H.
Jiang
,
F.
Liu
,
Y.
Liu
, and
Y.
Hao
,
ACS Appl. Mater. Interfaces
16
(
2
),
2954
(
2024
).
25.
Y.-K.
Liang
,
W.-L.
Li
,
Y.-J.
Wang
,
L.-C.
Peng
,
C.-C.
Lu
,
H.-Y.
Huang
,
S. H.
Yeong
,
Y.-M.
Lin
,
Y.-H.
Chu
, and
E.-Y.
Chang
,
IEEE Electron Device Lett.
43
(
9
),
1451
(
2022
).
26.
M. H.
Park
,
H. J.
Kim
,
G.
Lee
,
J.
Park
,
Y. H.
Lee
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
,
S. D.
Hyun
, and
H. W.
Park
,
Appl. Phys. Rev.
6
(
4
),
041403
(
2019
).
27.
M.
Wu
,
B.
Cui
,
X.
Wang
,
M.
Yuan
,
Y.
Wu
,
Y.
Wen
,
J.
Liu
,
T.
Zhang
,
P.
Ren
,
S.
Ye
,
R.
Wang
,
Z.
Ji
, and
R.
Huang
,
J. Appl. Phys.
136
(
14
),
144101
(
2024
).
28.
H.
Eschrig
,
The Fundamentals of Density Functional Theory
(
Springer
,
1996
).
29.
D. S.
Sholl
and
J. A.
Steckel
,
Density Functional Theory: A Practical Introduction
(
John Wiley & Sons
,
2022
).
30.
J. A.
Walsh
,
P. K.
Romano
,
B.
Forget
, and
K. S.
Smith
,
Comput. Phys. Commun.
196
,
134
(
2015
).
31.
W.
Jia
,
Z.
Cao
,
L.
Wang
,
J.
Fu
,
X.
Chi
,
W.
Gao
, and
L.-W.
Wang
,
Comput. Phys. Commun.
184
(
1
),
9
(
2013
).
32.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
(
22
),
9901
(
2000
).
33.
G.
Mills
and
H.
Jónsson
,
Phys. Rev. Lett.
72
(
7
),
1124
(
1994
).
34.
Z.
Gong
,
J.
Chen
,
Y.
Peng
,
Y.
Liu
,
X.
Yu
, and
G.
Han
,
Appl. Phys. Lett.
121
(
24
),
242901
(
2022
).
35.
N.
Bai
,
K. H.
Xue
,
J.
Huang
,
J. H.
Yuan
,
W.
Wang
,
G. Q.
Mao
,
L.
Zou
,
S.
Yang
,
H.
Lu
, and
H.
Sun
,
Adv. Electron. Mater.
9
(
1
),
2200737
(
2023
).
36.
S. L.
Weeks
,
A.
Pal
,
V. K.
Narasimhan
,
K. A.
Littau
, and
T.
Chiang
,
ACS Appl. Mater. Interfaces
9
(
15
),
13440
(
2017
).
37.
K. Z.
Rushchanskii
,
S.
Blügel
, and
M.
Ležaić
,
Faraday Discuss.
213
,
321
(
2019
).
38.
N.
Medvedeva
,
V.
Zhukov
,
M. Y.
Khodos
, and
V.
Gubanov
,
Phys. Status Solidi (b)
160
(
2
),
517
(
1990
).
39.
A.
Kashir
and
H.
Hwang
,
Nanotechnology
32
(
44
),
445706
(
2021
).
40.
M.
Pešić
,
F. P. G.
Fengler
,
L.
Larcher
,
A.
Padovani
,
T.
Schenk
,
E. D.
Grimley
,
X.
Sang
,
J. M.
LeBeau
,
S.
Slesazeck
, and
U.
Schroeder
,
Adv. Funct. Mater.
26
(
25
),
4601
(
2016
).
41.
R.
Cao
,
Q.-L.
Yang
,
H.-X.
Deng
,
S.-H.
Wei
,
J.
Robertson
, and
J.-W.
Luo
,
Nature
634
(
8036
),
1080
(
2024
).
42.
H.
Xia
,
S.
Sun
,
X.
Cheng
,
S.
Dong
,
H.
Xu
,
L.
Gao
, and
D.
Cui
,
J. Appl. Phys.
98
(
3
),
033513
(
2005
).
43.
L.
Mao
,
Microelectron. Reliab.
47
(
8
),
1213
(
2007
).
44.
N.
Umezawa
,
K.
Shiraishi
,
T.
Ohno
,
H.
Watanabe
,
T.
Chikyow
,
K.
Torii
,
K.
Yamabe
,
K.
Yamada
,
H.
Kitajima
, and
T.
Arikado
,
Appl. Phys. Lett.
86
(
14
),
143507
(
2005
).
45.
L.
Zhao
,
J.
Liu
, and
Y.
Zhao
,
Appl. Phys. Lett.
119
(
17
),
172903
(
2021
).
46.
J.
Lee
,
K.
Yang
,
J. Y.
Kwon
,
J. E.
Kim
,
D. I.
Han
,
D. H.
Lee
,
J. H.
Yoon
, and
M. H.
Park
,
Nano Convergence
10
(
1
),
55
(
2023
).
You do not currently have access to this content.