The zincblende (B3) to rock salt (B1) in ZnS is a typical pressure-induced phase transition. Meanwhile, B3-ZnS exhibits distinctive multi-phonon coupling behavior. Despite previous studies have explored the B3–B1 transition and phonon behavior in ZnS at room temperature, the effects of low temperature have yet to be experimentally verified. This has resulted in the absence of experimental data on the pressure–temperature (P–T) phase diagram at low temperatures. Here, we probe the pressure-induced B3–B1 phase transition and phonon evolution behavior of ZnS at low temperatures (90–300 K) using isothermal compression Raman spectroscopy. We experimentally determine the ZnS B3–B1 phase boundaries at low temperatures and obtain the corresponding Clapeyron slope, dP/dT = −16.4 ± 2.1 MPa/K. In addition, we found that the pressure coefficients (KiT) of all phonon modes of B3-ZnS decrease with decreasing temperature. This is mainly due to the reduction of anharmonic effects at low temperatures. Further, KiT of the multi-phonon coupling states are always larger than those of the single phonon state.

1.
S.
Ves
,
U.
Schwarz
,
N. E.
Christensen
,
K.
Syassen
, and
M.
Cardona
, “
Cubic ZnS under pressure: Optical-absorption edge, phase transition, and calculated equation of state
,”
Phys. Rev. B
42
(
14
),
9113
9118
(
1990
).
2.
A. G.
Milekhin
,
N. A.
Yeryukov
,
L. L.
Sveshnikova
,
T. A.
Duda
,
C.
Himcinschi
,
E. I.
Zenkevich
, and
D. R. T.
Zahn
, “
Resonant Raman scattering of ZnS, ZnO, and ZnS/ZnO core/shell quantum dots
,”
Appl. Phys. A
107
(
2
),
275
278
(
2012
).
3.
K.
Kabita
,
J.
Maibam
,
I.
Sharma
,
R. K. B.
Singh
, and
R. K.
Thapa
, “
Elastic properties and electronic structures of pressure induced zinc sulphide (ZnS): A density functional theory study
,”
Adv. Sci. Lett.
21
(
9
),
2906
2910
(
2015
).
4.
J.
Serrano
,
A.
Cantarero
,
M.
Cardona
,
N.
Garro
,
R.
Lauck
,
R. E.
Tallman
,
T. M.
Ritter
, and
B. A.
Weinstein
, “
Raman scattering in β-ZnS
,”
Phys. Rev. B
69
(
1
),
014301
(
2004
).
5.
Q.
Li
,
R.
Zhang
,
T.
Lv
, and
Q.
Cao
, “
Theoretical study of B3-to-B1 phase transition in ZnS
,”
Phys. Lett. A
380
(
43
),
3696
3702
(
2016
).
6.
A.
Onodera
and
A.
Ohtani
, “
Fixed points for pressure calibration above 100 kbars related to semiconductor‐metal transitions
,”
J. Appl. Phys.
51
(
5
),
2581
2585
(
1980
).
7.
T.
Yagi
and
S.
Akimoto
, “
Pressure fixed points between 100 and 200 kbar based on the compression of NaCl
,”
J. Appl. Phys.
47
(
7
),
3350
3354
(
1976
).
8.
M.
Uchino
,
T.
Mashimo
,
M.
Kodama
,
T.
Kobayashi
,
E.
Takasawa
,
T.
Sekine
,
Y.
Noguchi
,
H.
Hikosaka
,
K.
Fukuoka
,
Y.
Syono
,
T.
Kondo
, and
T.
Yagi
, “
Phase transition and EOS of zinc sulfide under shock and static compressions up to 135 GPa
,”
J. Phys. Chem. Solids
60
(
6
),
827
837
(
1999
).
9.
S.
Desgreniers
,
L.
Beaulieu
, and
I.
Lepage
, “
Pressure-induced structural changes in ZnS
,”
Phys. Rev. B
61
(
13
),
8726
8733
(
2000
).
10.
Y. C.
Cheng
,
C. Q.
Jin
,
F.
Gao
,
X. L.
Wu
,
W.
Zhong
,
S. H.
Li
, and
P. K.
Chu
, “
Raman scattering study of zinc blende and wurtzite ZnS
,”
J. Appl. Phys.
106
(
12
),
123505
(
2009
).
11.
S.
Ono
and
T.
Kikegawa
, “
Phase transition of ZnS at high pressures and temperatures
,”
Phase Transitions
91
(
1
),
9
14
(
2018
).
12.
P. K.
Das
,
N.
Mandal
, and
A.
Arya
, “
Effects of Fe substitution on B3-B1 phase transition and structural, vibrational, and electronic properties of ZnS from DFT calculations
,”
J. Appl. Phys.
121
(
8
),
085101
(
2017
).
13.
S.
Aswathappa
,
L.
Dai
,
S. J.
Dhas Sathiyadhas
,
M. B.
Dhas Sathiyadhas Amalapushpam
,
M.
Vijayan
,
R.
Suresh Kumar
, and
A. I.
Almansour
, “
Acoustic shock wave recovery experiments on cubic zinc sulfide nanoparticles for electrical and magnetic switches applications
,”
Ceram. Int.
50
(
5
),
7418
7430
(
2024
).
14.
G.
Ulian
and
G.
Valdrè
, “
Thermomechanical, electronic and thermodynamic properties of ZnS cubic polymorphs: An ab initio investigation on the zinc-blende–rock-salt phase transition
,”
Acta Crystallogr., Sect. B Struct. Sci. Cryst. Eng. Mater.
75
(
6
),
1042
1059
(
2019
).
15.
X.
Chen
,
X.
Li
,
L.
Cai
, and
J.
Zhu
, “
Pressure induced phase transition in ZnS
,”
Solid State Commun.
139
(
5
),
246
249
(
2006
).
16.
M.
Catti
, “
First-principles study of the orthorhombic mechanism for the B3/B1 high-pressure phase transition of ZnS
,”
Phys. Rev. B
65
(
22
),
224115
(
2002
).
17.
T.
Liu
,
Y.
Huang
,
S.
Wang
,
Y.
Wang
,
P.
Cheng
, and
J.
Wu
, “
Phase transition, structural stability and electrical properties of V or Mn doped ZnSe composites under high pressure
,”
Sci. Rep.
15
(
1
),
5227
(
2025
).
18.
H.
Kawamura
,
K.
Tachikawa
, and
O.
Shimomura
, “
Diamond anvil cell for cryogenic temperature with optical measurement system
,”
Rev. Sci. Instrum.
56
(
10
),
1903
1906
(
1985
).
19.
S. V.
Sinogeikin
,
J. S.
Smith
,
E.
Rod
,
C.
Lin
,
C.
Kenney-Benson
, and
G.
Shen
, “
Online remote control systems for static and dynamic compression and decompression using diamond anvil cells
,”
Rev. Sci. Instrum.
86
(
7
),
072209
(
2015
).
20.
J.
Trajic
,
R.
Kostic
, and
N.
Romčevic
, “
Raman spectroscopy of ZnS quantum dots
,”
J. Alloys Compd.
637
,
401
406
(
2015
).
21.
M. Y.
Tashmetov
,
B. N.
Madaminov
,
N. B.
Ismatov
,
F. K.
Khallokov
, and
B. A.
Abdikamalov
, “
Structure, morphology and properties of ZnS crystal irradiated by electrons of different fluences
,”
Int. J. Mod. Phys. B
2550103
(
2025
).
22.
A.
Liu
and
Y.
Song
, “
In situ high-pressure and low-temperature study of ammonia borane by Raman spectroscopy
,”
J. Phys. Chem. C
116
(
3
),
2123
2131
(
2012
).
23.
S.
Ono
, “
Phase transition in ZnSe at high pressures and high temperatures
,”
J. Phys. Chem. Solids
141
,
109409
(
2020
).
24.
Q.
Dong
,
S.
Li
,
R.
Liu
,
B.
Liu
,
Q.
Li
,
J.
Kim
, and
B.
Liu
, “
A morphology-dependent lattice stability investigation in ZnS nanostructures by high-pressure XAFS studies
,”
J. Mater. Chem. C
10
(
33
),
11959
11966
(
2022
).
25.
Y.
Wang
,
B.
Wu
,
J.
Liu
,
X.
Jia
,
Y.
Li
,
B.
Liu
,
L.
Fang
, and
L.
Lei
, “
Raman study of P–T phase diagram for U3O8
,”
J. Raman Spectrosc.
55
(
9
),
997
(
2024
).
26.
L.
Lei
,
Q. Q.
Tang
,
F.
Zhang
,
S.
Liu
,
B. B.
Wu
, and
C. Y.
Zhou
, “
Evidence for a new extended solid of nitrogen
,”
Chin. Phys. Lett.
37
(
6
),
068101
(
2020
).
27.
J.
Liu
,
Y.
Tao
,
C.
Fan
,
B.
Wu
,
Q.
Tang
, and
L.
Lei
, “
High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
,”
Chin. Phys. B
31
(
3
),
037801
(
2022
).
28.
S.
Liu
,
M.
Pu
,
Q.
Tang
,
F.
Zhang
,
B.
Wu
, and
L.
Lei
, “
Raman spectroscopy and phase stability of λ-N2
,”
Solid State Commun.
310
,
113843
(
2020
).
29.
F.
Datchi
,
A.
Dewaele
,
P.
Loubeyre
,
R.
Letoullec
,
Y.
Le Godec
, and
B.
Canny
, “
Optical pressure sensors for high-pressure–high-temperature studies in a diamond anvil cell
,”
High Pressure Res.
27
(
4
),
447
463
(
2007
).
30.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T. A.
Arias
, and
J. D.
Joannopoulos
, “
Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients
,”
Rev. Mod. Phys.
64
(
4
),
1045
1097
(
1992
).
31.
B.
Delley
, “
An all‐electron numerical method for solving the local density functional for polyatomic molecules
,”
J. Chem. Phys.
92
(
1
),
508
517
(
1990
).
32.
D.
Vanderbilt
, “
Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
,”
Phys. Rev. B
41
(
11
),
7892
7895
(
1990
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
34.
F.
Decremps
,
J.
Pellicer-Porres
,
A. M.
Saitta
,
J.-C.
Chervin
, and
A.
Polian
, “
High-pressure Raman spectroscopy study of wurtzite ZnO
,”
Phys. Rev. B
65
(
9
),
092101
(
2002
).
35.
F. J.
Manjón
,
J.
Serrano
,
I.
Loa
,
K.
Syassen
,
C. T.
Lin
, and
M.
Cardona
, “
Effect of pressure on the Raman anomaly of zinc-blende CuBr and Raman spectra of high-pressure phases
,”
Phys. Rev. B
64
(
6
),
064301
(
2001
).
36.
O. L.
Anderson
, “
Evidence supporting the approximation γρ = const for the Grüneisen parameter of the Earth's lower mantle
,”
J. Geophys. Res. Solid Earth
84
(
B7
),
3537
3542
, https://www.doi.org/10.1029/JB084iB07p03537 (
1979
).
You do not currently have access to this content.