Pancharatnam–Berry phase, the manifestation of geometric phase in optics, which originates from the adiabatic evolution of light in the anisotropic medium, has been widely explored in the past decades. With the rapid development of nonlinear metamaterials and metasurfaces, the concept of geometric phase has been extended to the regime of nonlinear optics and attracts growing interest due to its capability of manipulating the nonlinear optical fields. On the one hand, nonlinear geometric phase offers a platform to investigate the fundamental principles in light–matter interactions during the nonlinear optical processes. On the other hand, it can be applied to design nonlinear optical elements with versatile functionality, such as wavefront engineering, optical imaging, and optical holography. To give a comprehensive review of nonlinear geometric phase, here, we overview the fundamental mechanisms, including the symmetry selection rules, the origin of the geometric phase in harmonic generations, and the characteristics of nonlinear geometric phase. We summarize the related applications based on the concepts of nonlinear geometric phase and symmetry selection rules, mainly focusing on the recent progresses from nonlinear optical sources to nonlinear optical field manipulation and beyond. In addition to reviewing the achievements in a wide variety of applications based on the nonlinear geometric phase, we also give prospects on their future development. With distinctive features, nonlinear geometric phase may find its importance in not only scientific research but also industrial applications.

1.
Y.
Shen
,
The Principles of Nonlinear Optics
(
John Wiley and Sons
,
New York
,
1984
).
2.
R.
Boyd
,
Nonlinear Optics
, 4th ed. (
Academic Press
,
2020
).
3.
K. L.
Hakuta
,
L.
Marmet
, and
B. P.
Stoicheff
, “
Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen
,”
Phys. Rev. Lett.
66
(
5
),
596
599
(
1991
).
4.
M.
Jain
,
H.
Xia
,
G. Y.
Yin
,
A. J.
Merriam
, and
S. E.
Harris
, “
Efficient nonlinear frequency conversion with maximal atomic coherence
,”
Phys. Rev. Lett.
77
(
21
),
4326
4329
(
1996
).
5.
G. A.
Sefler
and
K.
Kitayama
, “
Frequency comb generation by four-wave mixing and the role of fiber dispersion
,”
J. Lightwave Technol.
16
(
9
),
1596
1605
(
1998
).
6.
D. E.
Chang
,
V.
Vuletic
, and
M. D.
Lukin
, “
Quantum nonlinear optics — photon by photon
,”
Nat. Photonics
8
(
9
),
685
694
(
2014
).
7.
I. A.
Walmsley
, “
Quantum optics: Science and technology in a new light
,”
Science
348
(
6234
),
525
530
(
2015
).
8.
T.
Schneider
,
Nonlinear Optics in Telecommunications
(
Springer Science & Business Media
,
2013
).
9.
P. A.
Franken
,
A. E.
Hill
,
C. W.
Peters
, and
G.
Weinreich
, “
Generation of optical harmonics
,”
Phys. Rev. Lett.
7
(
4
),
118
119
(
1961
).
10.
C. M.
Soukoulis
and
M.
Wegener
, “
Past achievements and future challenges in the development of three-dimensional photonic metamaterials
,”
Nat. Photonics
5
(
9
),
523
530
(
2011
).
11.
O.
Hess
,
J. B.
Pendry
,
S. A.
Maier
,
R. F.
Oulton
,
J. M.
Hamm
, and
K. L.
Tsakmakidis
, “
Active nanoplasmonic metamaterials
,”
Nat. Mater.
11
(
7
),
573
584
(
2012
).
12.
N. I.
Zheludev
and
Y. S.
Kivshar
, “
From metamaterials to metadevices
,”
Nat. Mater.
11
(
11
),
917
924
(
2012
).
13.
J. B.
Pendry
,
Y.
Luo
, and
R.
Zhao
, “
Transforming the optical landscape
,”
Science
348
(
6234
),
521
524
(
2015
).
14.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
,
F.
Aieta
,
J. P.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
, “
Light propagation with phase discontinuities: Generalized laws of reflection and refraction
,”
Science
334
(
6054
),
333
337
(
2011
).
15.
A. V.
Kildishev
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Planar photonics with metasurfaces
,”
Science
339
(
6125
),
1232009
(
2013
).
16.
N.
Meinzer
,
W. L.
Barnes
, and
I. R.
Hooper
, “
Plasmonic meta-atoms and metasurfaces
,”
Nat. Photonics
8
(
12
),
889
898
(
2014
).
17.
N.
Yu
and
F.
Capasso
, “
Flat optics with designer metasurfaces
,”
Nat. Mater.
13
(
2
),
139
150
(
2014
).
18.
X.
Ni
,
S.
Ishii
,
A. V.
Kildishev
, and
V. M.
Shalaev
, “
Ultra-thin, planar, Babinet-inverted plasmonic metalenses
,”
Light. Sci. Appl.
2
(
4
),
e72
(
2013
).
19.
M.
Khorasaninejad
,
W. T.
Chen
,
R. C.
Devlin
,
J.
Oh
,
A. Y.
Zhu
, and
F.
Capasso
, “
Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging
,”
Science
352
(
6290
),
1190
1194
(
2016
).
20.
G.
Zheng
,
H.
Mühlenbernd
,
M.
Kenney
,
G.
Li
,
T.
Zentgraf
, and
S.
Zhang
, “
Metasurface holograms reaching 80% efficiency
,”
Nat. Nanotechnol.
10
(
4
),
308
312
(
2015
).
21.
A.
Arbabi
,
Y.
Horie
,
M.
Bagheri
, and
A.
Faraon
, “
Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission
,”
Nat. Nanotechnol.
10
(
11
),
937
943
(
2015
).
22.
D.
Wen
,
F.
Yue
,
G.
Li
,
G.
Zheng
,
K. L.
Chan
,
S.
Chen
,
M.
Chen
,
K.
Li
,
P. W. H.
Wong
,
K. W.
Cheah
,
E. Y. B.
Pun
,
S.
Zhang
, and
X.
Chen
, “
Helicity multiplexed broadband metasurface holograms
,”
Nat. Commun.
6
,
8241
(
2015
).
23.
L.
Huang
,
H.
Mühlenbernd
,
X.
Li
,
X.
Song
,
B.
Bai
,
Y.
Wang
, and
T.
Zentgraf
, “
Broadband hybrid holographic multiplexing with geometric metasurfaces
,”
Adv. Mater.
27
(
41
),
6444
6449
(
2015
).
24.
G.
Li
,
M.
Kang
,
S.
Chen
,
S.
Zhang
,
E. Y. B.
Pun
,
K. W.
Cheah
, and
J.
Li
, “
Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light
,”
Nano Lett.
13
(
9
),
4148
4151
(
2013
).
25.
E.
Maguid
,
I.
Yulevich
,
D.
Veksler
,
V.
Kleiner
,
M. L.
Brongersma
, and
E.
Hasman
, “
Photonic spin-controlled multifunctional shared-aperture antenna array
,”
Science
352
(
6290
),
1202
1206
(
2016
).
26.
S.
Chen
,
Y.
Cai
,
G.
Li
,
S.
Zhang
, and
K. W.
Cheah
, “
Geometric metasurface fork gratings for vortex-beam generation and manipulation
,”
Laser Photonics Rev.
10
(
2
),
322
326
(
2016
).
27.
L.
Li
,
Z.
Liu
,
X.
Ren
,
S.
Wang
,
V. C.
Su
,
M. K.
Chen
,
C.
Chu
,
H. Y.
Kuo
,
B.
Liu
,
W.
Zang
,
G.
Guo
,
L.
Zhang
,
Z.
Wang
,
S.
Zhu
, and
D. P.
Tsai
, “
Metalens-array-based high-dimensional and multiphoton quantum source
,”
Science
368
(
6498
),
1487
1490
(
2020
).
28.
M.
Kauranen
and
A. V.
Zayats
, “
Nonlinear plasmonics
,”
Nat. Photonics
6
(
11
),
737
748
(
2012
).
29.
S.
Linden
,
F. B. P.
Niesler
,
J.
Förstner
,
Y.
Grynko
,
T.
Meier
, and
M.
Wegener
, “
Collective effects in second-harmonic generation from split-ring-resonator arrays
,”
Phys. Rev. Lett.
109
,
015502
(
2012
).
30.
S.
Chen
,
G.
Li
,
F.
Zeuner
,
W. H.
Wong
,
E. Y. B.
Pun
,
T.
Zentgraf
,
K. W.
Cheah
, and
S.
Zhang
, “
Symmetry-selective third-harmonic generation from plasmonic metacrystals
,”
Phys. Rev. Lett.
113
(
3
),
033901
(
2014
).
31.
M.
Celebrano
,
X.
Wu
,
M.
Baselli
,
S.
Grossmann
,
P.
Biagioni
,
A.
Locatelli
,
C.
De Angelis
,
G.
Cerullo
,
R.
Osellame
,
B.
Hecht
,
L.
Duò
,
F.
Ciccacci
, and
M.
Finazzi
, “
Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation
,”
Nat. Nanotechnol.
10
(
5
),
412
417
(
2015
).
32.
M. V.
Berry
, “
Quantal phase-factors accompanying adiabatic changes
,”
Proc. R. Soc. Lond. A
392
(
1802
),
45
57
(
1984
).
33.
M. W.
Klein
,
C.
Enkrich
,
M.
Wegener
, and
S.
Linden
, “
Second-harmonic generation from magnetic metamaterials
,”
Science
313
(
5786
),
502
504
(
2006
).
34.
N.
Segal
,
S.
Keren-Zur
,
N.
Hendler
, and
T.
Ellenbogen
, “
Controlling light with metamaterial-based nonlinear photonic crystals
,”
Nat. Photonics
9
(
3
),
180
184
(
2015
).
35.
G.
Li
,
S.
Chen
,
N.
Pholchai
,
B.
Reineke
,
P. W. H.
Wong
,
E. Y. B.
Pun
,
K. W.
Cheah
,
T.
Zentgraf
, and
S.
Zhang
, “
Continuous control of the nonlinearity phase for harmonic generations
,”
Nat. Mater.
14
(
6
),
607
612
(
2015
).
36.
S.
Pancharatnam
, “
Generalized theory of interference, and its applications. Part I. Coherent pencils
,”
Proc. Indian Acad. Sci.
44
(
5
),
247
262
(
1956
).
37.
W. T.
Chen
,
A. D. Y.
Zhu
, and
F.
Capasso
, “
Flat optics with dispersion-engineered metasurfaces
,”
Nat. Rev. Mater.
5
(
8
),
604
620
(
2020
).
38.
C.
Schlickriede
,
N.
Waterman
,
B.
Reineke
,
P.
Georgi
,
G.
Li
,
S.
Zhang
, and
T.
Zentgraf
, “
Imaging through nonlinear metalens using second harmonic generation
,”
Adv. Mater.
30
(
8
),
1703843
(
2018
).
39.
X.
Liu
,
Y.
Tang
,
Y.
Li
,
Z.
Hu
,
J.
Deng
, and
G.
Li
, “
Continuous amplitude control of second harmonic waves from the metasurfaces through interference paths
,”
Appl. Phys. Lett.
121
(
11
),
111701
(
2022
).
40.
M.
Tymchenko
,
J. S.
Gomez-Diaz
,
J.
Lee
,
N.
Nookala
,
M. A.
Belkin
, and
A.
Alù
, “
Gradient nonlinear Pancharatnam–Berry metasurfaces
,”
Phys. Rev. Lett.
115
(
20
),
207403
(
2015
).
41.
S. W.
Hell
and
J.
Wichmann
, “
Breaking the diffraction resolution limit by stimulated-emission: Stimulated-emission-depletion fluorescence microscopy
,”
Opt. Lett.
19
(
11
),
780
782
(
1994
).
42.
S.
Fürhapter
,
A.
Jesacher
,
S.
Bernet
, and
M.
Ritsch-Marte
, “
Spiral phase contrast imaging in microscopy
,”
Opt. Express
13
(
3
),
689
694
(
2005
).
43.
J.
Wang
,
J. Y.
Yang
,
I. M.
Fazal
,
N.
Ahmed
,
Y.
Yan
,
H.
Huang
,
Y.
Ren
,
Y.
Yue
,
S.
Dolinar
,
M.
Tur
, and
A. E.
Willner
, “
Terabit free-space data transmission employing orbital angular momentum multiplexing
,”
Nat. Photonics
6
(
7
),
488
496
(
2012
).
44.
H.
Tan
,
J.
Deng
,
R.
Zhao
,
X.
Wu
,
G.
Li
,
L.
Huang
,
J.
Liu
, and
X.
Cai
, “
A free-space orbital angular momentum multiplexing communication system based on a metasurface
,”
Laser Photonics Rev.
13
(
6
),
1800278
(
2019
).
45.
A.
Mair
,
A.
Vaziri
,
G.
Weihs
, and
A.
Zeilinger
, “
Entanglement of the orbital angular momentum states of photons
,”
Nature
412
(
6844
),
313
316
(
2001
).
46.
X.
Wang
,
X.
Cai
,
Z.
Su
,
M.
Chen
,
D.
Wu
,
L.
Li
,
N.
Liu
,
C.
Lu
, and
J.
Pan
, “
Quantum teleportation of multiple degrees of freedom of a single photon
,”
Nature
518
(
7540
),
516
519
(
2015
).
47.
T.
Stav
,
A.
Faerman
,
E.
Maguid
,
D.
Oren
,
V.
Kleiner
,
E.
Hasman
, and
M.
Segev
, “
Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials
,”
Science
361
(
6407
),
1101
1103
(
2018
).
48.
G.
Li
,
L.
Wu
,
K.
Li
,
S.
Chen
,
C.
Schlickriede
,
Z.
Xu
,
S.
Huang
,
W.
Li
,
Y.
Liu
,
E. Y. B.
Pun
,
T.
Zentgraf
,
K. W.
Cheah
,
Y.
Luo
, and
S.
Zhang
, “
Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation
,”
Nano Lett.
17
(
12
),
7974
7979
(
2017
).
49.
S.
Chen
,
K.
Li
,
J.
Deng
,
G.
Li
, and
S.
Zhang
, “
High-order nonlinear spin-orbit interaction on plasmonic metasurfaces
,”
Nano Lett.
20
(
12
),
8549
8555
(
2020
).
50.
R.
Rong
,
Y.
Li
,
M.
Wang
,
Y.
Tang
,
H.
Xu
,
K.
Li
,
G.
Li
,
T.
Cao
, and
S.
Chen
, “
Beam steering of nonlinear optical vortices with phase gradient plasmonic metasurfaces
,”
ACS Photonics
10
(
9
),
3248
3254
(
2023
).
51.
N.
Mao
,
J.
Deng
,
X.
Zhang
,
Y.
Tang
,
M.
Jin
,
Y.
Li
,
X.
Liu
,
K.
Li
,
T.
Cao
,
K. W.
Cheah
,
H.
Wang
,
J.
Ng
, and
G.
Li
, “
Nonlinear diatomic metasurface for real and Fourier space image encoding
,”
Nano Lett.
20
(
10
),
7463
7468
(
2020
).
52.
N.
Mao
,
G.
Zhang
,
Y.
Tang
,
Y.
Li
,
Z.
Hu
,
X.
Zhang
,
K.
Li
,
K. W.
Cheah
, and
G.
Li
, “
Nonlinear vectorial holography with quad-atom metasurfaces
,”
Proc. Natl. Acad. Sci. U S A
119
(
22
),
e2204418119
(
2022
).
53.
S.
Chen
,
F.
Zeuner
,
M.
Weismann
,
B.
Reineke
,
G.
Li
,
V. K.
Valev
,
K. W.
Cheah
,
N. C.
Panoiu
,
T.
Zentgraf
, and
S.
Zhang
, “
Giant nonlinear optical activity of achiral origin in planar metasurfaces with quadratic and cubic nonlinearities
,”
Adv. Mater.
28
(
15
),
2992
2999
(
2016
).
54.
M.
Wang
,
Y.
Li
,
Y.
Tang
,
J.
Chen
,
R.
Rong
,
G.
Li
,
T.
Cao
, and
S.
Chen
, “
Nonlinear chiroptical holography with Pancharatnam–Berry phase controlled plasmonic metasurface
,”
Laser Photonics Rev.
16
(
12
),
2200350
(
2022
).
55.
S. S.
Kruk
,
L.
Wang
,
B.
Sain
,
Z.
Dong
,
J.
Yang
,
T.
Zentgraf
, and
Y. S.
Kivshar
, “
Asymmetric parametric generation of images with nonlinear dielectric metasurfaces
,”
Nat. Photonics
16
(
8
),
561
565
(
2022
).
56.
F.
Walter
,
G.
Li
,
C.
Meier
,
S.
Zhang
, and
T.
Zentgraf
, “
Ultrathin nonlinear metasurface for optical image encoding
,”
Nano Lett.
17
(
5
),
3171
3175
(
2017
).
57.
Y.
Tang
,
Y.
Intaravanne
,
J.
Deng
,
K.
Li
,
X.
Chen
, and
G.
Li
, “
Nonlinear vectorial metasurface for optical encryption
,”
Phys. Rev. Appl.
12
(
2
),
024028
(
2019
).
58.
H.
Wang
,
Z.
Hu
,
J.
Deng
,
X.
Zhang
,
J.
Chen
,
K.
Li
, and
G.
Li
, “
All-optical ultrafast polarization switching with nonlinear plasmonic metasurfaces
,”
Sci. Adv.
10
(
8
),
eadk3882
(
2024
).
59.
A.
Sinelnik
,
S. H.
Lam
,
F.
Coviello
,
S.
Klimmer
,
G.
Della Valle
,
D. Y.
Choi
,
T.
Pertsch
,
G.
Soavi
, and
I.
Staude
, “
Ultrafast all-optical second harmonic wavefront shaping
,”
Nat. Commun.
15
,
2507
(
2024
).
60.
X.
Ma
,
H.
Zhao
,
B.
Dai
, and
M.
Ge
, “
Progress in application of THz-TDS to protein study
,”
Spectrosc. Spectral Anal.
28
(
10
),
2237
2242
(
2008
), available at https://europepmc.org/article/med/19123380
61.
P.
Mukherjee
and
B.
Gupta
, “
Terahertz (THz) frequency sources and antennas - A brief review
,”
Int. J. Infrared Millimeter Waves
29
(
12
),
1091
1102
(
2008
).
62.
Y. U.
Jeong
,
G. M.
Kazakevich
,
S. H.
Park
,
K.
Lee
,
B. C.
Lee
,
Y. H.
Cha
,
P.
Ahn
, and
J.
Mun
, “
High power table-top THz free electron laser and its application
,” in
2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves
(IEEE,
Busan, Korea (South)
,
2009
), pp.
1
2
.
63.
R. M.
Smith
and
M. A.
Arnold
, “
Terahertz time-domain spectroscopy of solid samples: Principles, applications, and challenges
,”
Appl. Spectrosc. Rev.
46
(
8
),
636
679
(
2011
).
64.
M.
Kawase
, “
Application of terahertz waves to food science
,”
Food Sci. Technol. Res.
18
(
5
),
601
609
(
2012
).
65.
S. K.
Mathanker
,
P. R.
Weckler
, and
N.
Wang
, “
Terahertz (THZ) applications in food and agriculture: A review
,”
Trans. ASABE
56
(
3
),
1213
1226
(
2013
).
66.
K.
Ahi
,
S.
Shahbazmohamadi
, and
N.
Asadizanjani
, “
Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging
,”
Opt. Lasers Eng.
104
,
274
284
(
2018
).
67.
Y.
Takida
,
K.
Nawata
, and
H.
Minamide
, “
Security screening system based on terahertz-wave spectroscopic gas detection
,”
Opt. Express
29
(
2
),
2529
2537
(
2021
).
68.
X.
Yang
,
X.
Zhao
,
K.
Yang
,
Y.
Liu
,
Y.
Liu
,
W.
Fu
, and
Y.
Luo
, “
Biomedical applications of terahertz spectroscopy and imaging
,”
Trends Biotechnol.
34
(
10
),
810
824
(
2016
).
69.
A.
Gong
,
Y.
Qiu
,
X.
Chen
,
Z.
Zhao
,
L.
Xia
, and
Y.
Shao
, “
Biomedical applications of terahertz technology
,”
Appl. Spectrosc. Rev.
55
(
5
),
418
438
(
2020
).
70.
S.
Jung
,
A.
Jiang
,
Y.
Jiang
,
K.
Vijayraghavan
,
X.
Wang
,
M.
Troccoli
, and
M. A.
Belkin
, “
Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources
,”
Nat. Commun.
5
,
4267
(
2014
).
71.
J.
Krause
,
M.
Wagner
,
S.
Winnerl
,
M.
Helm
, and
D.
Stehr
, “
Tunable narrowband THz pulse generation in scalable large area photoconductive antennas
,”
Opt. Express
19
(
20
),
19114
19121
(
2011
).
72.
P.
Tan
,
J.
Huang
,
K.
Liu
,
Y.
Xiong
, and
M.
Fan
, “
Terahertz radiation sources based on free electron lasers and their applications
,”
Sci. China Inf. Sci.
55
(
1
),
1
15
(
2012
).
73.
K. L.
Yeh
,
M. C.
Hoffmann
,
J.
Hebling
, and
K. A.
Nelson
, “
Generation of 10 μJ ultrashort terahertz pulses by optical rectification
,”
Appl. Phys. Lett.
90
(
17
),
171121
(
2007
).
74.
S.
Keren-Zur
,
M.
Tal
,
S.
Fleischer
,
D. M.
Mittleman
, and
T.
Ellenbogen
, “
Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces
,”
Nat. Commun.
10
,
1778
(
2019
).
75.
E.
Minerbi
,
S.
Keren-Zur
, and
T.
Ellenbogen
, “
Nonlinear metasurface Fresnel zone plates for terahertz generation and manipulation
,”
Nano Lett.
19
(
9
),
6072
6077
(
2019
).
76.
S.
Sideris
and
T.
Ellenbogen
, “
Terahertz generation in parallel plate waveguides activated by nonlinear metasurfaces
,”
Opt. Lett.
44
(
14
),
3590
3593
(
2019
).
77.
S.
Keren-Zur
and
T.
Ellenbogen
, “
Direct space to time terahertz pulse shaping with nonlinear metasurfaces
,”
Opt. Express
27
(
15
),
20837
20847
(
2019
).
78.
C.
McDonnell
,
J.
Deng
,
S.
Sideris
,
T.
Ellenbogen
, and
G.
Li
, “
Functional THz emitters based on Pancharatnam–Berry phase nonlinear metasurfaces
,”
Nat. Commun.
12
,
30
(
2021
).
79.
C.
McDonnell
,
J.
Deng
,
S.
Sideris
,
G.
Li
, and
T.
Ellenbogen
, “
Terahertz metagrating emitters with beam steering and full linear polarization control
,”
Nano Lett.
22
(
7
),
2603
2610
(
2022
).
80.
S.
Sideris
,
Z.
Hu
,
C.
McDonnell
,
G.
Li
, and
T.
Ellenbogen
, “
Holographic THz beam generation by nonlinear plasmonic metasurface emitters
,”
ACS Photonics
10
(
8
),
2972
2979
(
2023
).
81.
A.
Zdagkas
,
C.
McDonnell
,
J.
Deng
,
Y.
Shen
,
G.
Li
,
T.
Ellenbogen
,
N.
Papasimakis
, and
N. I.
Zheludev
, “
Observation of toroidal pulses of light
,”
Nat. Photonics
16
(
7
),
523
528
(
2022
).
82.
Y.
Lu
,
X.
Feng
,
Q.
Wang
,
X.
Zhang
,
M.
Fang
,
W. E. I.
Sha
,
Z.
Huang
,
Q.
Xu
,
L.
Niu
,
X.
Chen
,
C.
Ouyang
,
Y.
Yang
,
X.
Zhang
,
E.
Plum
,
S.
Zhang
,
J.
Han
, and
W.
Zhang
, “
Integrated terahertz generator-manipulators using epsilon-near-zero-hybrid nonlinear metasurfaces
,”
Nano Lett.
21
(
18
),
7699
7707
(
2021
).
83.
J.
Pettine
,
P.
Padmanabhan
,
T.
Shi
,
L.
Gingras
,
L.
McClintock
,
C. C.
Chang
,
K. W. C.
Kwock
,
L.
Yuan
,
Y.
Huang
,
J.
Nogan
,
J. K.
Baldwin
,
P.
Adel
,
R.
Holzwarth
,
A.
Azad
,
F.
Ronning
,
A. J.
Taylor
,
R. P.
Prasankumar
,
S. Z.
Lin
, and
H. T.
Chen
, “
Light-driven nanoscale vectorial currents
,”
Nature
626
(
8001
),
984
989
(
2024
).
84.
Y.
Tang
,
K.
Li
,
X.
Zhang
,
J.
Deng
,
G.
Li
, and
E.
Brasselet
, “
Harmonic spin-orbit angular momentum cascade in nonlinear optical crystals
,”
Nat. Photonics
14
(
11
),
658
662
(
2020
).
85.
Y.
Wu
,
Y.
Tang
,
Z.
Hu
,
L.
Feng
,
G.
Guo
,
X.
Ren
, and
G.
Li
, “
Optical spin-orbit interaction in spontaneous parametric downconversion
,”
Optica
10
(
5
),
538
543
(
2023
).
86.
K.
Nagai
,
T.
Okamoto
,
Y.
Shinohara
,
H.
Sanada
, and
K.
Oguri
, “
High-harmonic spin-orbit angular momentum generation in crystalline solids preserving multiscale dynamical symmetry
,”
Sci. Adv.
10
(
31
),
eado7315
(
2024
).
87.
H.
Hong
,
C.
Huang
,
C.
Ma
,
J.
Qi
,
X.
Shi
,
C.
Liu
,
S.
Wu
,
Z.
Sun
,
E.
Wang
, and
K.
Liu
, “
Twist phase matching in two-dimensional materials
,”
Phys. Rev. Lett.
131
(
23
),
233801
(
2023
).
88.
B.
Kim
,
J. C.
Jin
,
Z.
Wang
,
L.
He
,
T.
Christensen
,
E. J.
Mele
, and
B.
Zhen
, “
Three-dimensional nonlinear optical materials from twisted two-dimensional van der Waals interfaces
,”
Nat. Photonics
18
,
91
98
(
2024
).
89.
H.
Tang
,
Y.
Wang
,
X.
Ni
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Jarillo-Herrero
,
S.
Fan
,
E.
Mazur
,
A.
Yacoby
, and
Y.
Cao
, “
On-chip multi-degree-of-freedom control of two-dimensional materials
,”
Nature
632
(
8027
),
1038
1044
(
2024
).
90.
X.
Chen
,
E.
Korblova
,
D.
Dong
,
X.
Wei
,
R.
Shao
,
L.
Radzihovsky
,
M. A.
Glaser
,
J. E.
Maclennan
,
D.
Bedrov
,
D. M.
Walba
, and
N. A.
Clark
, “
First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: Polar domains and striking electro-optics
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
25
),
14021
14031
(
2020
).
91.
X.
Zhao
,
H.
Long
,
H.
Xu
,
J.
Kougo
,
R.
Xia
,
J.
Li
,
M.
Huang
, and
S.
Aya
, “
Nontrivial phase matching in helielectric polarization helices: Universal phase matching theory, validation, and electric switching
,”
Proc. Natl. Acad. Sci. U S A
119
(
29
),
e2205636119
(
2022
).
92.
C. L.
Folcia
,
J.
Ortega
,
R.
Vidal
,
T.
Sierra
, and
J.
Etxebarria
, “
The ferroelectric nematic phase: An optimum liquid crystal candidate for nonlinear optics
,”
Liq. Cryst.
49
(
6
),
899
906
(
2022
).
93.
V.
Sultanov
,
A.
Kavcic
,
E.
Kokkinakis
,
N.
Sebastian
,
M. V.
Chekhova
, and
M.
Humar
, “
Tunable entangled photon-pair generation in a liquid crystal
,”
Nature
631
(
8020
),
294
299
(
2024
).
94.
J.
Pan
,
B.
Zhu
,
L.
Ma
,
W.
Chen
,
G.
Zhang
,
J.
Tang
,
Y.
Liu
,
Y.
Wei
,
C.
Zhang
,
Z.
Zhu
,
W.
Zhu
,
G.
Li
,
Y.
Lu
, and
N. A.
Clark
, “
Nonlinear geometric phase coded ferroelectric nematic fluids for nonlinear soft-matter photonics
,”
Nat. Commun.
15
,
8732
(
2024
).
You do not currently have access to this content.