Charge carrier transportation in semiconductor films is a fundamental but crucial process for the light-emitting diodes. Although there have been many studies on charge transport properties of devices based on traditional inorganic crystals and organic amorphous films, such charge behavior within emerging quantum-dot light-emitting diodes (QLEDs)—which are composed of amorphous nanocrystal films with strong quantum confinement effects—has rarely been discussed. Here, we demonstrate that the tunneling effect really occurs in the hybrid QLEDs with ZnO as the electron-transport layer. By suppressing the thermal effect, a negative differential resistance (NDR) phenomenon is observed by decreasing the working temperature of the QLED low to 150 K. Two types of quantum dots (QDs) with different shell structures (i.e., different tunneling barrier) are used to comparatively examine the tunneling effect. The current density–voltage properties of the QLEDs reveal that the device based on QDs with the sharp core-shell structure (i.e., larger tunneling barrier) exhibits more obvious NDR behavior, which is attributed to the stronger tunneling effect. Our results offer significant insight into the charge dynamics and working mechanism in the QLEDs.

1.
J.
Kwak
,
W. K.
Bae
,
D.
Lee
,
I.
Park
,
J.
Lim
,
M.
Park
,
H.
Cho
,
H.
Woo
,
D. Y.
Yoon
,
K.
Char
,
S.
Lee
, and
C.
Lee
,
Nano Lett.
12
,
2362
2366
(
2012
).
2.
Y.
Yang
,
Y.
Zheng
,
W.
Cao
,
A.
Titov
,
J.
Hyvonen
,
J. R.
Manders
,
J.
Xue
,
P. H.
Holloway
, and
L.
Qian
,
Nat. Photonics
9
,
259
266
(
2015
).
3.
H.
Shen
,
Q.
Gao
,
Y.
Zhang
,
Y.
Lin
,
Q.
Lin
,
Z.
Li
,
L.
Chen
,
Z.
Zeng
,
X.
Li
,
Y.
Jia
,
S.
Wang
,
Z.
Du
,
L. S.
Li
, and
Z.
Zhang
,
Nat. Photonics
13
,
192
197
(
2019
).
4.
T.
Kim
,
K. H.
Kim
,
S.
Kim
,
S. M.
Choi
,
H.
Jang
,
H. K.
Seo
,
H.
Lee
,
D. Y.
Chung
, and
E.
Jang
,
Nature
586
,
385
389
(
2020
).
5.
H.
Xu
,
J.
Song
,
P.
Zhou
,
Y.
Song
,
J.
Xu
,
H.
Shen
,
S.
Fang
,
Y.
Gao
,
Z.
Zuo
,
J. M.
Pina
,
O.
Voznyy
,
C.
Yang
,
Y.
Hu
,
J.
Li
,
J.
Du
,
E. H.
Sargent
, and
F.
Fan
,
Nat. Photonics
18
,
186
191
(
2024
).
6.
T.
Zhou
,
T.
Wang
,
J.
Bai
,
S.
Liu
,
H.
Zhang
,
W.
Xie
, and
W.
Ji
,
Adv. Mater.
36
,
2313888
(
2024
).
7.
C. H.
Wang
,
S. P.
Chang
,
P. H.
Ku
,
J. C.
Li
,
Y. P.
Lan
,
C. C.
Lin
,
H. C.
Yang
,
H. C.
Kuo
,
T. C.
Lu
,
S. C.
Wang
, and
C. Y.
Chang
,
Appl. Phys. Lett.
99
,
171106
(
2011
).
8.
P. W. M.
Blom
and
M. C. J. M.
Vissenberg
,
Phys. Rev. Lett.
80
,
3819
3822
(
1998
).
9.
G. G.
Malliaras
,
J. R.
Salem
,
P. J.
Brock
, and
C.
Scott
,
Phys. Rev. B
58
,
R13411
(
1998
).
10.
Z. H.
Zhang
,
S. T.
Tan
,
Z.
Kyaw
,
Y.
Ji
,
W.
Liu
,
Z.
Ju
,
N.
Hasanov
,
X. W.
Sun
, and
H. V.
Demir
,
Appl. Phys. Lett.
102
,
193508
(
2013
).
11.
M.
Maur
,
B.
Galler
,
I.
Pietzonka
,
M.
Strassburg
,
H.
Lugauer
, and
A.
Carlo
,
Appl. Phys. Lett.
105
,
133504
(
2014
).
12.
B.
Zhu
,
S.
Wang
,
T.
Wang
,
X.
Chi
,
H.
Zhang
,
H. Z.
Zhang
, and
W.
Ji
,
J. Phys. D: Appl. Phys.
58
,
075105
(
2025
).
13.
S. M.
Jung
,
T. H.
Lee
,
S. Y.
Bang
,
S. D.
Han
,
D. W.
Shin
,
S.
Lee
,
H. W.
Choi
,
Y. H.
Suh
,
X. B.
Fan
,
J. W.
Jo
,
S.
Zhan
,
J.
Yang
,
C.
Samarakoon
,
Y.
Kim
,
L. G.
Occhipinti
,
G.
Amaratunga
, and
J. M.
Kim
,
npj Comput. Mater.
7
,
122
(
2021
).
14.
S.
Rani
and
J.
Kumar
,
J. Appl. Phys.
133
,
104302
(
2023
).
15.
B.
Kumar
,
S. A.
Campbell
, and
P. P.
Ruden
,
J. Appl. Phys.
114
,
044507
(
2013
).
16.
J. H.
Choi
,
A. T.
Fafarman
,
S. J.
Oh
,
D. K.
Ko
,
D. K.
Kim
,
B. T.
Diroll
,
S.
Muramoto
,
J. G.
Gillen
,
C. B.
Murray
, and
C. R.
Kagan
,
Nano Lett.
12
,
2631
2638
(
2012
).
17.
J. S.
Lee
,
M. V.
Kovalenko
,
J.
Huang
,
D. S.
Chung
, and
D. V.
Talapin
,
Nat. Nanotechnol.
6
,
348
352
(
2011
).
18.
E.
Talgorn
,
Y.
Gao
,
M.
Aerts
,
L. T.
Kunneman
,
J. M.
Schins
,
T. J.
Savenije
,
M. A.
Van Huis
,
H. S. J.
Van Der Zant
,
A. J.
Houtepen
, and
L. D. A.
Siebbeles
,
Nat. Nanotechnol.
6
,
733
739
(
2011
).
19.
Y.
Deng
,
X.
Lin
,
W.
Fang
,
D.
Di
,
L.
Wang
,
R. H.
Friend
,
X.
Peng
, and
Y.
Jin
,
Nat. Commun.
11
,
2309
(
2020
).
20.
W.
Ji
,
P.
Jing
,
L.
Zhang
,
D.
Li
,
Q.
Zeng
,
S.
Qu
, and
J.
Zhao
,
Sci. Rep.
4
,
6974
(
2014
).
21.
P.
Yu
,
Q.
Yuan
,
J.
Zhao
,
H.
Zhang
, and
W.
Ji
,
J. Phys. Chem. Lett.
13
,
2878
2884
(
2022
).
22.
P.
Yu
,
X.
Zhu
,
J.
Bai
,
H.
Zhang
, and
W.
Ji
,
ACS Appl. Mater. Interfaces
14
,
52253
52261
(
2022
).
23.
C.
Zang
,
M.
Xu
,
L.
Zhang
,
S.
Liu
, and
W.
Xie
,
J. Mater. Chem. C
9
,
1484
1519
(
2021
).
24.
J.
Wu
,
L.
Chen
,
Y.
Zhao
,
Z.
Xiong
,
W.
Ji
, and
Y.
Lei
,
Appl. Phys. Lett.
119
,
073303
(
2021
).
25.
W. D.
Goodhue
,
T. C. L. G.
Sollner
,
H. Q.
Le
,
E. R.
Brown
, and
B. A.
Vojak
,
Appl. Phys. Lett.
49
,
1086
1088
(
1986
).
26.
W. J.
Yoon
,
S. Y.
Chung
,
P. R.
Berger
, and
S. M.
Asar
,
Appl. Phys. Lett.
87
,
203506
(
2005
).
27.
S.
Yang
,
P.
Liu
,
S.
Guo
,
L.
Zhang
,
D.
Yang
,
Y.
Jiang
, and
B.
Zou
,
Appl. Phys. Lett.
104
,
033301
(
2014
).
28.
A.
Krier
and
X. L.
Huang
,
Appl. Phys. Lett.
86
,
061113
(
2005
).
29.
M. A.
Mohd Sarjidan
,
S. H.
Basri
,
N. K.
Za'aba
,
M.
Zaini
, and
W. H.
Abd Majid
,
Bull. Mater. Sci.
38
,
235
239
(
2015
).
30.
J.
Bai
,
X.
Liu
,
X.
Chi
,
A.
Tang
,
H.
Zhang
, and
W.
Ji
,
J. Phys. Chem. Lett.
15
,
11847
11854
(
2024
).
31.
P.
Jing
,
J.
Zheng
,
M.
Ikezawa
,
X.
Liu
,
S.
Lv
,
X.
Kong
,
J.
Zhao
, and
Y.
Masumoto
,
J. Phys. Chem. C
113
,
13545
13550
(
2009
).
32.
X.
Xue
,
B.
Zhu
,
Z.
Kang
,
X.
Chi
,
H.
Zhang
,
A.
Tang
, and
W.
Ji
,
Laser Photonics Rev.
2401166
(
2024
).
33.
Y. G.
Cui
,
T.
Wang
,
B. Y.
Zhu
,
X. T.
Yuan
,
S.
Wang
,
H. Z.
Zhang
,
X. C.
Chi
, and
W. Y.
Ji
,
Appl. Phys. Lett.
125
,
253503
(
2024
).
You do not currently have access to this content.