In this work, the influence of fin-slanted angles (α) on the electrical performance of lateral β-Ga2O3 MOSFETs was investigated through a combination of experiments and Sentaurus TCAD simulations. The fin-slanted devices demonstrated enhancement-mode characteristics with an on/off ratio of around 107. The increment in α resulted in improved drain-to-source current (IDS) and extrinsic transconductance (Gm). The voltage-blocking performance also showed significant enhancement with increasing α due to the mitigation of edge crowding, achieving a 40% increase in the breakdown voltage (VBR) for devices with an α of 15° and gate-to-drain length (LGD) of 10 μm. A detailed simulation analysis of the electric field distribution within the fin at the gate electrode edge identified an optimal α of approximately 25°, which effectively mitigates electric field crowding and has the potential to enhance the DC performance of the MOSFETs. These findings highlight the critical role of fin-slanted angle optimization in advancing the performance of lateral β-Ga2O3 MOSFETs, positioning them as promising candidates for next-generation power electronics.

1.
H.
Jain
,
S.
Rajawat
, and
P.
Agrawal
, in
IEEE International Conference on Recent Advances in Microwave Theory and Applications
(
IEEE
,
2008
), p.
878
.
2.
M.
Higashiwaki
,
A.
Kuramata
,
H.
Murakami
, and
Y.
Kumagai
,
J. Phys. D: Appl. Phys.
50
(
33
),
333002
(
2017
).
3.
M.
Orita
,
H.
Ohta
,
M.
Hirano
, and
H.
Hosono
,
Appl. Phys. Lett.
77
(
25
),
4166
(
2000
).
4.
S.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
,
J. Appl. Phys.
124
(
22
),
220901
(
2018
).
5.
S.
Pearton
,
J.
Yang
,
P. H.
Cary
IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
(
1
),
011301
(
2018
).
6.
R.
Roy
,
V.
Hill
, and
E.
Osborn
,
J. Am. Chem. Soc.
74
(
3
),
719
(
1952
).
7.
H.
Zhou
,
J.
Zhang
,
C.
Zhang
,
Q.
Feng
,
S.
Zhao
,
P.
Ma
, and
Y.
Hao
,
J. Semicond.
40
(
1
),
011803
(
2019
).
8.
K. D.
Chabak
,
J. P.
McCandless
,
N. A.
Moser
,
A. J.
Green
,
K.
Mahalingam
,
A.
Crespo
,
N.
Hendricks
,
B. M.
Howe
,
S. E.
Tetlak
,
K.
Leedy
,
R. C.
Fitch
,
D.
Wakimoto
,
K.
Sasaki
,
A.
Kuramata
, and
G. H.
Jessen
,
IEEE Electron Device Lett.
39
(
1
),
67
(
2018
).
9.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
,
Jpn. J. Appl. Phys., Part 1
55
(
12
),
1202A2
(
2016
).
10.
M. H.
Wong
and
M.
Higashiwaki
,
IEEE Trans. Electron Devices
67
(
10
),
3925
(
2020
).
11.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
Van de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa-Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
,
Adv. Electron. Mater.
4
(
1
),
1600501
(
2018
).
12.
S.
Sharma
,
K.
Zeng
,
S.
Saha
, and
U.
Singisetti
,
IEEE Electron Device Lett.
41
(
6
),
836
(
2020
).
13.
K.
Zeng
,
A.
Vaidya
, and
U.
Singisetti
,
IEEE Electron Device Lett.
39
(
9
),
1385
(
2018
).
14.
K.
Zeng
,
A.
Vaidya
, and
U.
Singisetti
,
Appl. Phys. Express
12
(
8
),
081003
(
2019
).
15.
J. K.
Mun
,
K.
Cho
,
W.
Chang
,
H.-W.
Jung
, and
J.
Do
,
ECS J. Solid State Sci. Technol.
8
(
7
),
Q3079
(
2019
).
16.
D.
Lei
,
K.
Han
,
Y.
Wu
,
Z.
Liu
, and
X.
Gong
,
IEEE J. Electron Devices Soc.
7
,
596
(
2019
).
17.
M.
Singh
,
M. A.
Casbon
,
M. J.
Uren
,
J. W.
Pomeroy
,
S.
Dalcanale
,
S.
Karboyan
,
P. J.
Tasker
,
M. H.
Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
,
M.
Higashiwaki
, and
M.
Kuball
,
IEEE Electron Device Lett.
39
(
10
),
1572
(
2018
).
18.
D.
Lei
,
K.
Han
,
Y.
Wu
,
Z.
Liu
, and
X.
Gong
, in
IEEE Electron Devices Technology and Manufacturing Conference
(
IEEE
,
2019
), p.
23
.
19.
S.
Sharma
,
L.
Meng
,
A. A. U.
Bhuiyan
,
Z.
Feng
,
D.
Eason
,
H.
Zhao
, and
U.
Singisetti
,
IEEE Electron Device Lett.
43
(
12
),
2029
(
2022
).
20.
Z.
Hu
,
Y.
Lv
,
C.
Zhao
,
Q.
Feng
,
Z.
Feng
,
K.
Dang
,
X.
Tian
,
Y.
Zhang
,
J.
Ning
,
H.
Zhou
,
X.
Kang
,
J.
Zhang
, and
Y.
Hao
,
IEEE Electron Device Lett.
41
(
3
),
441
(
2020
).
21.
N.
Allen
,
M.
Xiao
,
X.
Yan
,
K.
Sasaki
,
M. J.
Tadjer
,
J.
Ma
,
R.
Zhang
,
H.
Wang
, and
Y.
Zhang
,
IEEE Electron Device Lett.
40
(
9
),
1399
(
2019
).
22.
H.
Liu
,
J.
Li
,
Y.
Lv
,
Y.
Wang
,
X.
Lu
,
S.
Dun
,
T.
Han
,
H.
Guo
,
A.
Bu
,
X.
Ma
,
Z.
Feng
, and
Y.
Hao
,
Appl. Phys. Lett.
121
(
20
),
202101
(
2022
).
23.
J.
Ma
and
E.
Matioli
,
IEEE Electron Device Lett.
38
(
9
),
1305
(
2017
).
24.
L.
Nela
,
J.
Ma
,
C.
Erine
,
P.
Xiang
,
T.-H.
Shen
,
V.
Tileli
,
T.
Wang
,
K.
Cheng
, and
E.
Matioli
,
Nat. Electron.
4
(
4
),
284
(
2021
).
25.
J.
Ma
,
C.
Erine
,
M.
Zhu
,
N.
Luca
,
P.
Xiang
,
K.
Cheng
, and
E.
Matioli
, in
IEEE International Electron Devices Meeting
(
IEEE
,
2019
), p.
4.1.1
.
26.
Y.
Zhang
,
A.
Zubair
,
Z.
Liu
,
M.
Xiao
,
J.
Perozek
,
Y.
Ma
, and
T.
Palacios
,
Semicond. Sci. Technol.
36
(
5
),
054001
(
2021
).
27.
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
E. G.
Villora
,
K.
Shimamura
, and
S.
Yamakoshi
,
Appl. Phys. Express
5
(
3
),
035502
(
2012
).
You do not currently have access to this content.