NaNbO3 (NN) is a significant lead-free alternative for pulse power systems or nonvolatile memories due to its antiferroelectric P phase at room temperature. However, a comparable free energy between P phase and another ferroelectric Q phase leads to an irreversible transition from P to Q phase just under a weak electric field, which results in the unobservable double hysteresis loops. In addition, recent studies reveal that the critical field needed during the transition process is inconsistent between in situ microstructure characterization and macroscopic polarization measurement. Consequently, the intricate field-induced phase transition in NN is perplexing. Based on high sensitivity of Raman spectroscopy to symmetry breaking in lattices, this work systematically investigates the in situ Raman spectra of NN single crystals, analyzing the evolution and depolarization behavior of various phonons under an electric field. Correspondingly, the transition from P to Q phase is determinately identified, accompanied by in-depth understanding of the phonon dynamics of field-induced phase transition. This present work provides a reliable experimental foundation for further probing on the transition mechanism of ferroelectric/antiferroelectric order in dielectrics, as well as facilitating the performance control and application development of NN-based devices.

1.
C. S.
Htet
,
S.
Nayak
,
A.
Manjón-Sanz
,
J.
Liu
,
J.
Kong
,
D. R.
Sørensen
,
F.
Marlton
,
M. R. V.
Jørgensen
, and
A.
Pramanick
, “
Atomic structural mechanism for ferroelectric-antiferroelectric transformation in perovskite NaNbO3
,”
Phys. Rev. B
105
,
174113
(
2022
).
2.
S. K.
Mishra
,
N.
Choudhury
,
S. L.
Chaplot
,
P. S. R.
Krishna
, and
R.
Mittal
, “
Competing antiferroelectric and ferroelectric interactions in NaNbO3: Neutron diffraction and theoretical studies
,”
Phys. Rev. B
76
,
024110
(
2007
).
3.
Z.
Liu
,
J.
Lu
,
Y.
Mao
,
P.
Ren
, and
H.
Fan
, “
Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases
,”
J. Eur. Ceram. Soc.
38
,
4939
4945
(
2018
).
4.
M.
Jauhari
,
S. K.
Mishra
,
R.
Mittal
,
P. U.
Sastry
, and
S. L.
Chaplot
, “
Effect of chemical pressure on competition and cooperation between polar and antiferrodistortive distortions in sodium niobate
,”
Phys. Rev. Mater.
1
,
074411
(
2017
).
5.
J.
Ye
,
G.
Wang
,
X.
Chen
,
F.
Cao
, and
X.
Dong
, “
Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1-x)NaNbO3-xCaSnO3 ceramics
,”
Appl. Phys. Lett.
114
,
122901
(
2019
).
6.
M.
Zhang
,
C.
Zhao
,
L.
Fulanović
,
J.
Rödel
,
N.
Novak
,
A.
Schökel
, and
J.
Koruza
, “
Revealing the mechanism of electric-field-induced phase transition in antiferroelectric NaNbO3 by in situ high-energy X-ray diffraction
,”
Appl. Phys. Lett.
118
,
132903
(
2021
).
7.
M.
Zhang
,
H.
Ding
,
S.
Egert
,
C.
Zhao
,
L.
Villa
,
L.
Fulanović
,
P. B.
Groszewicz
,
G.
Buntkowsky
,
H.
Kleebe
,
K.
Albe
,
A.
Klein
, and
J.
Koruza
, “
Tailoring high-energy storage NaNbO3-based materials from antiferroelectric to relaxor states
,”
Nat. Commun.
14
,
1525
(
2023
).
8.
M.
Zhang
,
N.
Hadaeghi
,
S.
Egert
,
H.
Ding
,
H.
Zhang
,
P. B.
Groszewicz
,
G.
Buntkowsky
,
A.
Klein
, and
J.
Koruza
, “
Design of lead-free antiferroelectric (1-x)NaNbO3-xSrSnO3 compositions guided by first-principles calculations
,”
Chem. Mater.
33
,
266
274
(
2021
).
9.
M.
Jauhari
,
S. K.
Moshra
,
H. K.
Poswal
,
R.
Mittal
, and
S. L.
Chaplot
, “
Evidence of low-temperature phase transition in BaTiO3-modified NaNbO3: Raman spectroscopy study
,”
J. Raman Spectrosc.
50
,
1949
1955
(
2019
).
10.
T.
Schneider
,
J.
Cardoletti
,
H.
Ding
,
M.
Zhang
,
T.
Jiang
,
M.
Major
,
P.
Komissinskity
,
L.
Molina-Luna
, and
L.
Alff
, “
Evidence for antipolar displacements in NaNbO3 thin films
,”
Appl. Phys. Lett.
122
,
122906
(
2022
).
11.
Y. I.
Yuzyuk
,
R. A.
Shakhovoy
,
S. I.
Raevskaya
,
I. P.
Raevski
,
M. E.
Marssi
,
M. G.
Karkut
, and
P.
Simon
, “
Ferroelectric Q-phase in a NaNbO3 epitaxial thin film
,”
Appl. Phys. Lett.
96
,
222904
(
2010
).
12.
L.
Chao
,
Y.
Hou
,
M.
Zheng
, and
M.
Zhu
, “
High dense structure boosts stability of antiferroelectric phase of NaNbO3 polycrystalline ceramics
,”
Appl. Phys. Lett.
108
,
212902
(
2016
).
13.
S. I.
Raevskaya
,
M. A.
Malitskaya
,
C.
Chou
,
A. G.
Lutokhin
,
I. P.
Raevski
, and
V. V.
Titov
, “
Dielectric and pyroelectric properties of sodium niobate ceramics containing inclusions of ferroelectric Q phase
,”
Phys. Status Solidi A
216
,
1800972
(
2019
).
14.
L.
Gao
,
H.
Guo
,
S.
Zhang
, and
C. A.
Randall
, “
Stabilized antiferroelectricity in xBiScO3-(1-x)NaNbO3 lead-free ceramics with established double hysteresis loops
,”
Appl. Phys. Lett.
112
,
092905
(
2018
).
15.
A.
Yadav
,
I. P.
Raevski
, and
P. M.
Sarun
, “
Investigation on structural, dielectric, and impedance characteristics of Zr-modified NaNbO3 ceramics at elevated temperature
,”
Mater. Today Commun.
33
,
104712
(
2022
).
16.
E.
Przezdziecka
,
K. M.
Paradowska
,
W.
Lisowski
,
A.
Wierzbicka
,
R.
Jakiela
,
E.
Zielony
,
Z.
Gumienny
,
E.
Placzek-Popko
, and
A.
Kozanecki
, “
ZnO: Sb MBE layers with different Sb content-optical, electronic and structural analysis
,”
J. Alloy Compd.
797
,
1163
1172
(
2019
).
17.
K.
Devloo-Casier
,
K. F.
Ludwig
,
C.
Detavernier
, and
J.
Dendooven
, “
In situ synchrotron based X-ray techniques as monitoring tools for atomic layer deposition
,”
J. Vac. Sci. Technol. A
32
,
010801
(
2014
).
18.
Y.
Mikhlin
, “
X-ray photoelectron spectroscopy in mineral processing studies
,”
Appl. Sci.
10
,
5138
(
2020
).
19.
H.
Guo
,
H.
Shimizu
, and
C. A.
Randall
, “
Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics
,”
Appl. Phys. Lett.
107
,
112904
(
2015
).
20.
G. F.
Teixeira
,
H. S.
Seleghini
,
W. B.
Bastos
,
N.
Jacomaci
,
B.
Stojadinović
,
Z.
Dohčević-Mitrović
,
F.
Colmati
,
M. A.
San-Miguel
,
E. L.
Longo
, and
M. A.
Zaghete
, “
On the coexistence of ferroelectric and antiferroelectric polymorphs in NaNbO3 fibers at room temperature
,”
J. Mater. Chem. C
11
,
5524
5533
(
2023
).
21.
Y.
Ye
,
A.
Cui
,
L.
Gao
,
K.
Jiang
,
L.
Zhu
,
J.
Zhang
,
L.
Shang
,
Y.
Li
,
G.
Wang
,
X.
Dong
,
Z.
Hu
, and
J.
Chu
, “
In situ Raman scattering studies of pressure-temperature phase diagrams in antiferroelectric xCaSnO3-modified NaNbO3 ceramics
,”
Appl. Phys. Lett.
119
,
132905
(
2021
).
22.
R. J. C.
Lima
,
P. T. C.
Freire
,
J. M.
Sasaki
,
A. P.
Ayala
,
F. E. A.
Melo
,
J. M.
Filho
,
K. C.
Serra
,
S.
Lanfredi
,
M. H.
Lente
, and
J. A.
Eiras
, “
Temperature-dependent Raman scattering studies in NaNbO3 ceramics
,”
J. Raman Spectrosc.
33
,
669
674
(
2002
).
23.
L. G.
Wang
,
M. W.
Yao
,
C. M.
Zhu
,
G. B.
Yu
,
H. B.
Zhou
, and
R. T.
Huang
, “
Investigation on microstructure transition and electrical behavior in (1-x)Bi4Ti3O12/xBi4.5K0.5Ti4O15 lead-free composites
,”
J. Alloy Compd.
905
,
164166
(
2022
).
24.
R. A.
Shakhovoy
,
S. I.
Raevskaya
,
L. A.
Shakhovaya
,
D. V.
Suzdalev
,
I. P.
Raevski
,
Y. I.
Yuzyuk
,
A. F.
Semenchev
, and
M. E. I.
Marssi
, “
Ferroelectric Q and antiferroelectric P phases' coexistence and local phase transitions in oxygen-deficient NaNbO3 single crystal: Micro-Raman, dielectric and dilatometric studies
,”
J. Raman Spectrosc.
43
,
1141
1145
(
2012
).
25.
S.
Tsukada
,
Y.
Fujii
,
Y.
Yoneda
,
H.
Moriwake
,
A.
Konishi
, and
Y.
Akishige
, “
Raman scattering study of the ferroelectric phase transition in BaTi2O5
,”
Phys. Rev. B
97
,
024116
(
2018
).
26.
Y.
Terai
,
H.
Yamaguchi
,
J.
Tsukamoto
,
N.
Murakoso
, and
H.
Hoshida
, “
Polarized Raman spectra of β-FeSi2 epitaxial film grown by molecular beam epitaxy
,”
AIP Adv.
8
,
105028
(
2018
).
27.
A.
Cui
,
Y.
Ye
,
L.
Zheng
,
K.
Jiang
,
L.
Zhu
,
L.
Shang
,
Y.
Li
,
Z.
Hu
, and
J.
Chu
, “
Exploring lattice symmetry evolution with discontinuous phase transition by Raman scattering criteria: The single-crystalline (K, Na)NbO3 model system
,”
Phys. Rev. B
100
,
024102
(
2019
).
You do not currently have access to this content.