In this article, we investigate the in situ growth of Al2O3 on β-Ga2O3 using metal-organic chemical vapor deposition at a high temperature of 800 °C. The Al2O3 is grown within the same reactor as the β-Ga2O3, employing trimethylaluminum and O2 as precursors without breaking the vacuum. We characterize the shallow and deep-level traps through stressed capacitance–voltage (C–V) and photo-assisted C–V methods. The high-temperature deposited dielectric demonstrates an impressive catastrophic breakdown field of approximately 10 MV/cm. Furthermore, we evaluate the reliability and lifetime of the dielectrics using time-dependent dielectric breakdown measurements. By modifying the dielectric deposition process to include a high-temperature (800 °C) thin interfacial layer and a low-temperature (600 °C) bulk layer, we report a 10-year lifetime under a stress field of 3.5 MV/cm along a catastrophic breakdown field of 7.8 MV/cm.

1.
A. J.
Green
,
J.
Speck
,
G.
Xing
,
P.
Moens
,
F.
Allerstam
,
K.
Gumaelius
,
T.
Neyer
,
A.
Arias-Purdue
,
V.
Mehrotra
,
A.
Kuramata
et al, “
β-Gallium oxide power electronics
,”
APL Mater.
10
,
029201
(
2022
).
2.
S.
Pearton
,
J.
Yang
,
P. H.
Cary
, IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
,
011301
(
2018
).
3.
C.
Peterson
,
F.
Alema
,
A.
Bhattacharyya
,
Z.
Ling
,
S.
Roy
,
A.
Osinsky
, and
S.
Krishnamoorthy
, “
Kilovolt-class β-Ga2O3 MOSFETs on 1-in. bulk substrates
,”
Appl. Phys. Lett.
124
,
082104
(
2024
).
4.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
T.
Nakamura
,
D.
Jena
, and
H.
Xing
, “
Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2019
), pp.
12.4.1
12.4.4
.
5.
A.
Bhattacharyya
,
S.
Sharma
,
F.
Alema
,
P.
Ranga
,
S.
Roy
,
C.
Peterson
,
G.
Seryogin
,
A.
Osinsky
,
U.
Singisetti
, and
S.
Krishnamoorthy
, “
4.4 kV β-Ga2O3 MESFETs with power figure of merit exceeding 100 MW/cm2
,”
Appl. Phys. Express
15
,
061001
(
2022
).
6.
A.
Bhattacharyya
,
P.
Ranga
,
S.
Roy
,
C.
Peterson
,
F.
Alema
,
G.
Seryogin
,
A.
Osinsky
, and
S.
Krishnamoorthy
, “
Multi-kV class β-Ga2O3 MESFETs with a lateral figure of merit up to 355 MW/cm2
,”
IEEE Electron Device Lett.
42
,
1272
1275
(
2021
).
7.
C. N.
Saha
,
A.
Vaidya
,
A.
Bhuiyan
,
L.
Meng
,
S.
Sharma
,
H.
Zhao
, and
U.
Singisetti
, “
Scaled β-Ga2O3 thin channel MOSFET with 5.4 MV/cm average breakdown field and near 50 GHz fMAX
,”
Appl. Phys. Lett.
122
,
182106
(
2023
).
8.
C. N.
Saha
,
A.
Vaidya
, and
U.
Singisetti
, “
Temperature dependent pulsed IV and RF characterization of β-(AlxGa1−x)2O3/ β-Ga2O3 hetero-structure FET with ex situ passivation
,”
Appl. Phys. Lett.
120
,
172102
(
2022
).
9.
H.
Murakami
,
K.
Nomura
,
K.
Goto
,
K.
Sasaki
,
K.
Kawara
,
Q. T.
Thieu
,
R.
Togashi
,
Y.
Kumagai
,
M.
Higashiwaki
,
A.
Kuramata
et al, “
Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy
,”
Appl. Phys. Express
8
,
015503
(
2015
).
10.
A.
Bhattacharyya
,
P.
Ranga
,
S.
Roy
,
J.
Ogle
,
L.
Whittaker-Brooks
, and
S.
Krishnamoorthy
, “
Low temperature homoepitaxy of (010) β-Ga2O3 by metalorganic vapor phase epitaxy: Expanding the growth window
,”
Appl. Phys. Lett.
117
,
142102
(
2020
).
11.
A.
Mauze
,
Y.
Zhang
,
T.
Itoh
,
E.
Ahmadi
, and
J. S.
Speck
, “
Sn doping of (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Lett.
117
,
222102
(
2020
).
12.
H. N.
Masten
,
J. D.
Phillips
, and
R. L.
Peterson
, “
Ternary alloy rare-earth Scandate as dielectric for β-Ga2O3 MOS structures
,”
IEEE Trans. Electron Devices
66
,
2489
2495
(
2019
).
13.
Z. A.
Jian
,
S.
Mohanty
, and
E.
Ahmadi
, “
Deep UV-assisted capacitance–voltage characterization of post-deposition annealed Al2O3/ β-Ga2O3 (001) MOSCAPs
,”
Appl. Phys. Lett.
116
,
242105
(
2020
).
14.
A. E.
Islam
,
C.
Zhang
,
K.
DeLello
,
D. A.
Muller
,
K. D.
Leedy
,
S.
Ganguli
,
N. A.
Moser
,
R.
Kahler
,
J. C.
Williams
,
D. M.
Dryden
,
S.
Tetlak
,
K. J.
Liddy
,
A. J.
Green
, and
K. D.
Chabak
, “
Defect engineering at the Al2O3/(010) β-Ga2O3 interface via surface treatments and forming gas post-deposition anneals
,”
IEEE Trans. Electron Devices
69
,
5656
5663
(
2022
).
15.
X.
Liu
,
S.
Chan
,
F.
Wu
,
Y.
Li
,
S.
Keller
,
J.
Speck
, and
U.
Mishra
, “
Metalorganic chemical vapor deposition of Al2O3 using trimethylaluminum and O2 precursors: Growth mechanism and crystallinity
,”
J. Cryst. Growth
408
,
78
84
(
2014
).
16.
S.
Roy
,
A. E.
Chmielewski
,
A.
Bhattacharyya
,
P.
Ranga
,
R.
Sun
,
M. A.
Scarpulla
,
N.
Alem
, and
S.
Krishnamoorthy
, “
In situ dielectric Al2O3/ β-Ga2O3 interfaces grown using metal-organic chemical vapor deposition
,”
Adv. Electron. Mater.
7
,
2100333
(
2021
).
17.
Z. A.
Jian
,
I.
Sayed
,
W.
Liu
,
S.
Mohanty
, and
E.
Ahmadi
, “
Characterization of MOCVD-grown AlSiO gate dielectric on β-Ga2O3 (001)
,”
Appl. Phys. Lett.
118
,
172102
(
2021
).
18.
S.
Dhara
,
A.
Dheenan
,
N. K.
Kalarickal
,
H.-L.
Huang
,
A. E.
Islam
,
C.
Joishi
,
A.
Fiedler
,
J. F.
McGlone
,
S. A.
Ringel
,
J.
Hwang
et al, “
Plasma-assisted deposition and characterization of Al2O3 dielectric layers on (001) β-Ga2O3
,”
Appl. Phys. Lett.
123
,
083504
(
2023
).
19.
P.
Ranga
,
A.
Bhattacharyya
,
A.
Chmielewski
,
S.
Roy
,
N.
Alem
, and
S.
Krishnamoorthy
, “
Delta-doped β-Ga2O3 films with narrow FWHM grown by metalorganic vapor-phase epitaxy
,”
Appl. Phys. Lett.
117
,
172105
(
2020
).
20.
X.
Liu
,
J.
Kim
,
R.
Yeluri
,
S.
Lal
,
H.
Li
,
J.
Lu
,
S.
Keller
,
B.
Mazumder
,
J.
Speck
, and
U.
Mishra
, “
Fixed charge and trap states of in situ Al2O3 on Ga-face GaN metal-oxide-semiconductor capacitors grown by metalorganic chemical vapor deposition
,”
J. Appl. Phys.
114
,
164507
(
2013
).
21.
X.
Liu
,
J.
Kim
,
D.
Suntrup
,
S.
Wienecke
,
M.
Tahhan
,
R.
Yeluri
,
S.
Chan
,
J.
Lu
,
H.
Li
,
S.
Keller
et al, “
In situ metalorganic chemical vapor deposition of Al2O3 on N-face GaN and evidence of polarity induced fixed charge
,”
Appl. Phys. Lett.
104
,
263511
(
2014
).
22.
B.
Swenson
and
U.
Mishra
, “
Photoassisted high-frequency capacitance–voltage characterization of the Si3N4/GaN interface
,”
J. Appl. Phys.
106
,
064902
(
2009
).
23.
R.
Yeluri
,
X.
Liu
,
B. L.
Swenson
,
J.
Lu
,
S.
Keller
, and
U. K.
Mishra
, “
Capacitance–voltage characterization of interfaces between positive valence band offset dielectrics and wide bandgap semiconductors
,”
J. Appl. Phys.
114
,
083718
(
2013
).
24.
T.
Kamimura
,
D.
Krishnamurthy
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
Epitaxially grown crystalline Al2O3 interlayer on β-Ga2O3 (010) and its suppressed interface state density
,”
Jpn. J. Appl. Phys.
55
,
1202B5
(
2016
).
25.
A.
Hiraiwa
,
T.
Sasaki
,
S.
Okubo
,
K.
Horikawa
, and
H.
Kawarada
, “
Time-dependent dielectric breakdown of atomic-layer-deposited Al2O3 films on GaN
,”
J. Appl. Phys.
123
,
155303
(
2018
).
26.
D.
Bisi
,
S. H.
Chan
,
M.
Tahhan
,
O. S.
Koksaldi
,
S.
Keller
,
M.
Meneghini
,
G.
Meneghesso
,
E.
Zanoni
, and
U. K.
Mishra
, “
Quality and reliability of in-situ Al2O3 MOS capacitors for GaN-based power devices
,” in
28th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
2016
), pp.
119
122
.
27.
T.
Liu
,
S.
Zhu
,
M. H.
White
,
A.
Salemi
,
D.
Sheridan
, and
A. K.
Agarwal
, “
Time-dependent dielectric breakdown of commercial 1.2 kV 4H-SiC power MOSFETs
,”
IEEE J. Electron Devices Soc.
9
,
633
639
(
2021
).
28.
J.
McPherson
and
H.
Mogul
, “
Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO2 thin films
,”
J. Appl. Phys.
84
,
1513
1523
(
1998
).
You do not currently have access to this content.