In this paper, an optically transparent rectifying metasurface system (RMS) is designed and validated for simultaneously harvesting radio frequency (RF) energy while enabling the efficient transmission of visible light. The RMS comprises an optically transparent metasurface absorber (OTMA) based on indium tin oxide materials and a voltage-doubling rectifier circuit. The proposed RMS features several advantages, including polarization insensitivity, wide incidence angle coverage, low profile, and the ability to operate at low incident power densities. Utilizing a stacked structure, the RMS and the solar cell can provide a more hybrid output power to accommodate more application scenarios. To validate its performance, a prototype 3 × 3 OTMA array was designed, fabricated, and measured. Results demonstrate that the fabricated RMS achieves RF to DC efficiencies of 19.64% at 2.4 GHz and 7.92% at 5.8 GHz, with an impressive 80% optical transparency. Furthermore, solar energy harvesting tests show that the measured maximum power point for the RF/solar hybrid energy harvesting is 13.11% higher than that of a single solar panel under a light intensity of 257 lux.

1.
S.
Sudevalayam
and
P.
Kulkarni
, “
Energy harvesting sensor nodes: Survey and implications
,”
IEEE Commun. Surv. Tutorials
13
,
443
461
(
2011
).
2.
Y.
Zhao
,
W.
An
,
Y.
Luo
,
S.
Li
,
L.
Xiong
, and
S.
Yu
, “
Low-profile antenna integrated with solar cells for the 2.4 GHz band
,”
IEEE Antennas Wireless Propag. Lett.
20
,
443
447
(
2021
).
3.
J. H.
Kim
,
B.
Kim
,
S.-W.
Kim
,
H. W.
Kang
,
M.-C.
Park
,
D. H.
Park
,
B. K.
Ju
, and
W. K.
Choi
, “
High-performance coaxial piezoelectric energy generator (C-PEG) yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag
,”
Nanotechnology
32
,
145401
(
2021
).
4.
Y. K.
Tan
and
S. K.
Panda
, “
Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes
,”
IEEE Trans. Ind. Electron.
58
,
4424
4435
(
2011
).
5.
K.-T.
Lin
,
H.
Lin
,
T.
Yang
, and
B.
Jia
, “
Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion
,”
Nat. Commun.
11
,
1389
(
2020
).
6.
B.
Ghaderi
,
V.
Nayyeri
,
M.
Soleimani
, and
O. M.
Ramahi
, “
Multi-polarisation electromagnetic energy harvesting with high efficiency
,”
IET Microwaves, Antennas Propag.
12
,
2271
2275
(
2018
).
7.
F.
Erkmen
and
O. M.
Ramahi
, “
A scalable, dual-polarized absorber surface for electromagnetic energy harvesting and wireless power transfer
,”
IEEE Trans. Microwave Theory Tech.
69
,
4021
4028
(
2021
).
8.
Y.
Wei
,
J.
Duan
,
H.
Jing
,
Z.
Lyu
,
J.
Hao
,
Z.
Qu
,
J.
Wang
, and
B.
Zhang
, “
A multiband, polarization-controlled metasurface absorber for electromagnetic energy harvesting and wireless power transfer
,”
IEEE Trans. Microwave Theory Tech.
70
,
2861
2871
(
2022
).
9.
F.
Erkmen
,
T. S.
Almoneef
, and
O. M.
Ramahi
, “
Scalable electromagnetic energy harvesting using frequency-selective surfaces
,”
IEEE Trans. Microwave Theory Tech.
66
,
2433
2441
(
2018
).
10.
A.
Hajiaghajani
,
P.
Rwei
,
A. H.
Afandizadeh Zargari
,
A. R.
Escobar
,
F.
Kurdahi
,
M.
Khine
, and
P.
Tseng
, “
Amphibious epidermal area networks for uninterrupted wireless data and power transfer
,”
Nat. Commun.
14
,
7522
(
2023
).
11.
X.
Zhang
,
H.
Liu
, and
L.
Li
, “
Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting
,”
Appl. Phys. Lett.
111
,
071902
(
2017
).
12.
A. Z.
Ashoor
,
T. S.
Almoneef
, and
O. M.
Ramahi
, “
A planar dipole array surface for electromagnetic energy harvesting and wireless power transfer
,”
IEEE Trans. Microwave Theory Tech.
66
,
1553
1560
(
2018
).
13.
O.
O'Conchubhair
,
K.
Yang
,
P.
McEvoy
, and
M. J.
Ammann
, “
Amorphous silicon solar vivaldi antenna
,”
IEEE Antennas Wireless Propag. Lett.
15
,
893
896
(
2016
).
14.
B.
Naresh
,
V. K.
Singh
, and
V.
Sharma
, “
Integration of RF rectenna with thin film solar cell to power wearable electronics
,”
Int. J. Microwave Wireless Technol.
13
,
46
57
(
2021
).
15.
W.
Song
,
X.
Fan
,
B.
Xu
,
F.
Yan
,
H.
Cui
,
Q.
Wei
,
R.
Peng
,
L.
Hong
,
J.
Huang
, and
Z.
Ge
, “
All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency
,”
Adv. Mater.
30
,
1800075
(
2018
).
16.
B.-Y.
Yu
,
Z.-H.
Wang
,
L.
Ju
,
C.
Zhang
,
Z.-G.
Liu
,
L.
Tao
, and
W.-B.
Lu
, “
Flexible and wearable hybrid RF and solar energy harvesting system
,”
IEEE Trans. Antennas Propag.
70
,
2223
2233
(
2022
).
17.
T.
Peter
,
T. A.
Rahman
,
S.
Cheung
,
R.
Nilavalan
,
H. F.
Abutarboush
, and
A.
Vilches
, “
A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting
,”
IEEE Trans. Antennas Propag.
62
,
1844
1853
(
2014
).
18.
Y.
Zhang
,
S.
Shen
,
C. Y.
Chiu
, and
R.
Murch
, “
Hybrid RF-solar energy harvesting systems utilizing transparent multiport micromeshed antennas
,”
IEEE Trans. Microwave Theory Tech.
67
,
4534
4546
(
2019
).
19.
P.
Zhang
,
X.
Zhang
, and
L.
Li
, “
An optically transparent metantenna for RF wireless energy harvesting
,”
IEEE Trans. Antennas Propag.
70
,
2550
2560
(
2022
).
20.
Z.
Gao
,
Q.
Fan
,
X.
Tian
,
C.
Xu
,
Z.
Meng
,
S.
Huang
,
T.
Xiao
, and
C.
Tian
, “
An optically transparent broadband metamaterial absorber for radar-infrared bi-stealth
,”
Opt. Mater.
112
,
110793
(
2021
).
21.
L.
Dong
,
L.
Si
,
H.
Xu
,
Q.
Shen
,
X.
Lv
,
Y.
Zhuang
, and
Q.
Zhang
, “
Rapid customized design of a conformal optical transparent metamaterial absorber based on the circuit analog optimization method
,”
Opt. Express
30
,
8303
8316
(
2022
).
22.
Y.
Zhang
,
H.
Dong
,
N.
Mou
,
H.
Li
,
X.
Yao
, and
L.
Zhang
, “
Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications
,”
Nanoscale
13
,
7831
7837
(
2021
).
23.
K.
Chaudhary
,
V. K.
Singh
,
M. S.
Bisht
,
J.
Ramkumar
,
S. A.
Ramakrishna
, and
K. V.
Srivastava
, “
Optically transparent adhesives for microwave metamaterial absorber with PET–PDMS interface
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
12
,
1253
1261
(
2022
).
24.
Q.
Zhou
,
X.
Yin
,
F.
Ye
,
R.
Mo
,
Z.
Tang
,
X.
Fan
,
L.
Cheng
, and
L.
Zhang
, “
Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure
,”
Appl. Phys. A
125
,
131
(
2019
).
25.
H.-Y.
Wang
,
F.
Cheng
, and
C.
Gu
, “
A single-layer efficient polarization-insensitive electromagnetic rectifying metasurface for wireless power transfer
,”
Appl. Phys. Lett.
122
,
261703
(
2023
).
26.
C.
Wang
,
J.
Zhang
,
S.
Bai
,
X.
Zhu
, and
Z.
Zheng
, “
A harmonic suppression energy collection metasurface insensitive to load and input power for microwave power transmission
,”
IEEE Trans. Microwave Theory Tech.
70
,
4036
4044
(
2022
).
27.
A. Z.
Ashoor
and
O. M.
Ramahi
, “
Polarization-independent cross-dipole energy harvesting surface
,”
IEEE Trans. Microwave Theory Tech.
67
,
1130
1137
(
2019
).
28.
L.
Li
,
X.
Zhang
,
C.
Song
,
W.
Zhang
,
T.
Jia
, and
Y.
Huang
, “
Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer
,”
IEEE Trans. Microwave Theory Tech.
69
,
1518
1528
(
2021
).
29.
K.
Lee
and
S. K.
Hong
, “
Rectifying metasurface with high efficiency at low power for 2.45 GHz band
,”
IEEE Antennas Wireless Propag. Lett.
19
,
2216
2220
(
2020
).
30.
G. T.
Oumbé Tékam
,
V.
Ginis
,
J.
Danckaert
, and
P.
Tassin
, “
Designing an efficient rectifying cut-wire metasurface for electromagnetic energy harvesting
,”
Appl. Phys. Lett.
110
,
083901
(
2017
).
You do not currently have access to this content.