With the miniaturization of electronic devices, thermal management has become a critical challenge, especially for high-power systems where efficient heat dissipation is essential. Polycrystalline diamond films, renowned for their exceptional thermal conductivity, offer a promising solution. However, the thermal boundary resistance (TBR) at the diamond/substrate interface remains a significant bottleneck, severely impacting heat dissipation efficiency. This study presents a measurement approach tailored for quantifying TBR in thick-film diamond heterostructures, focusing on diamond-on-silicon (Diamond-on-Si) systems with a silicon nitride barrier layer. Compared to conventional methods, such as transient thermoreflectance techniques, which often exhibit limited sensitivity for thick layers, this approach demonstrates greater reliability and applicability. The findings establish a foundation for advancing strategies to reduce TBR and improve the thermal management performance of diamond films in high-power electronic applications.

1.
K.
Chen
,
B.
Song
,
N. K.
Ravichandran
,
Q.
Zheng
,
X.
Chen
,
H.
Lee
,
H.
Sun
,
S.
Li
,
G. A. G.
Udalamatta Gamage
,
F.
Tian
,
Z.
Ding
,
Q.
Song
,
A.
Rai
,
H.
Wu
,
P.
Koirala
,
A. J.
Schmidt
,
K.
Watanabe
,
B.
Lv
,
Z.
Ren
,
L.
Shi
,
D. G.
Cahill
,
T.
Taniguchi
,
D.
Broido
, and
G.
Chen
, “
Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride
,”
Science
367
,
555
559
(
2020
).
2.
M.
Zdrojek
, “
Heat management with a twist in layered materials
,”
Nature
597
,
637
638
(
2021
).
3.
R.
Qi
,
R.
Shi
,
Y.
Li
,
Y.
Sun
,
M.
Wu
,
N.
Li
,
J.
Du
,
K.
Liu
,
C.
Chen
,
J.
Chen
,
F.
Wang
,
D.
Yu
,
E.-G.
Wang
, and
P.
Gao
, “
Measuring phonon dispersion at an interface
,”
Nature
599
,
399
403
(
2021
).
4.
C.
Zhang
,
R. D.
Vispute
,
K.
Fu
, and
C.
Ni
, “
A review of thermal properties of CVD diamond films
,”
J. Mater. Sci.
58
,
3485
3507
(
2023
).
5.
J.
Anaya
,
S.
Rossi
,
M.
Alomari
,
E.
Kohn
,
L.
Tóth
,
B.
Pécz
,
K. D.
Hobart
,
T. J.
Anderson
,
T. I.
Feygelson
,
B. B.
Pate
, and
M.
Kuball
, “
Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties
,”
Acta Mater.
103
,
141
152
(
2016
).
6.
M.
Nazari
,
B. L.
Hancock
,
J.
Anderson
,
K. D.
Hobart
,
T. I.
Feygelson
,
M. J.
Tadjer
,
B. B.
Pate
,
T. J.
Anderson
,
E. L.
Piner
, and
M. W.
Holtz
, “
Optical characterization and thermal properties of CVD diamond films for integration with power electronics
,”
Solid-State Electron.
136
,
12
17
(
2017
).
7.
T. J.
Anderson
,
A. D.
Koehler
,
K. D.
Hobart
,
M. J.
Tadjer
,
T. I.
Feygelson
,
J. K.
Hite
,
B. B.
Pate
,
F. J.
Kub
, and
C. R.
Eddy
, “
Nanocrystalline diamond-gated AlGaN/GaN HEMT
,”
IEEE Electron Device Lett.
34
,
1382
1384
(
2013
).
8.
V. N.
Mochalin
,
O.
Shenderova
,
D.
Ho
, and
Y.
Gogotsi
, “
The properties and applications of nanodiamonds
,”
Nat. Nanotechnol.
7
,
11
23
(
2012
).
9.
L.
Yates
,
J.
Anderson
,
X.
Gu
,
C.
Lee
,
T.
Bai
,
M.
Mecklenburg
,
T.
Aoki
,
M. S.
Goorsky
,
M.
Kuball
,
E. L.
Piner
, and
S.
Graham
, “
Low thermal boundary resistance interfaces for GaN-on-diamond devices
,”
ACS Appl. Mater. Interfaces
10
,
24302
24309
(
2018
).
10.
Y.
Zhou
,
R.
Ramaneti
,
J.
Anaya
,
S.
Korneychuk
,
J.
Derluyn
,
H.
Sun
,
J.
Pomeroy
,
J.
Verbeeck
,
K.
Haenen
, and
M.
Kuball
, “
Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs
,”
Appl. Phys. Lett.
111
,
041901
(
2017
).
11.
Y.
Wang
,
B.
Zhou
,
G.
Ma
,
J.
Zhi
,
C.
Yuan
,
H.
Sun
,
Y.
Ma
,
J.
Gao
,
Y.
Wang
, and
S.
Yu
, “
Effect of bias-enhanced nucleation on the microstructure and thermal boundary resistance of GaN/SiNx/diamond multilayer composites
,”
Mater. Charact.
201
,
112985
(
2023
).
12.
S.
Ahmed
,
R.
Liske
,
T.
Wunderer
,
M.
Leonhardt
,
R.
Ziervogel
,
C.
Fansler
,
T.
Grotjohn
,
J.
Asmussen
, and
T.
Schuelke
, “
Extending the 3ω-method to the MHz range for thermal conductivity measurements of diamond thin films
,” in
Proceedings of the Applied Diamond Conference/NanoCarbon 2005
(
NASA
,
2005
), Vol.
15
, pp.
389
393
.
13.
H.
Dai
and
R.
Wang
, “
Methods for measuring thermal conductivity of two-dimensional materials: A review
,”
Nanomaterials
12
,
589
(
2022
).
14.
H.
Oprins
,
V.
Cherman
,
B.
Vermeersch
,
F.
Luciano
,
X.
Chang
,
V.
Founta
,
Y.
Ding
,
C.
Adelmann
, and
Z.
Tokei
, “
Experimental thermal characterization of thin film low-k dielectric materials
,” in
23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
(
IEEE
,
2022
), pp.
1
8
.
15.
T.
Beechem
,
L.
Yates
, and
S.
Graham
, “
Invited review article: Error and uncertainty in Raman thermal conductivity measurements
,”
Rev. Sci. Instrum.
86
,
041101
(
2015
).
16.
S.
Hadi
,
F. A.
Falah
, and
A.
Kurniawan
, “
The design of high-temperature thermal conductivity measurements apparatus for thin sample size
,”
MATEC Web Conf.
101
,
03007
(
2017
).
17.
J.-W.
Zhao
,
R.
Zhao
,
Y.-K.
Huo
, and
W.-L.
Cheng
, “
Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials
,”
Int. J. Heat Mass Transfer
140
,
705
716
(
2019
).
18.
J.
Chen
,
X.
Xu
,
J.
Zhou
, and
B.
Li
, “
Interfacial thermal resistance: Past, present, and future
,”
Rev. Mod. Phys.
94
,
025002
(
2022
).
19.
K.
Mackenzie
,
D.
Johnson
,
M.
DeVre
,
R.
Westerman
, and
B.
Reelfs
, “
Stress control of Si-based PECVD dielectrics
,” ECS Meeting Abstracts MA2005-01 (
2006
), p.
406
.
20.
Y.
Zhou
,
J.
Anaya
,
J.
Pomeroy
,
H.
Sun
,
X.
Gu
,
A.
Xie
,
E.
Beam
,
M.
Becker
,
T. A.
Grotjohn
,
C.
Lee
, and
M.
Kuball
, “
Barrier-layer optimization for enhanced GaN-on-diamond device cooling
,”
ACS Appl. Mater. Interfaces
9
,
34416
34422
(
2017
).
21.
M.
Wiora
,
K.
Brühne
, and
H.-J.
Fecht
, “
Synthesis of nanodiamond
,” in
Carbon-Based Nanomaterials and Hybrids
, edited by
H.-J.
Fecht
,
K.
Brühne
, and
P.
Gluche
(
Pan Stanford Publishing
,
2014
), pp.
5
48
.
22.
D. H.
Olson
,
J. L.
Braun
, and
P. E.
Hopkins
, “
Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale
,”
J. Appl. Phys.
126
,
150901
(
2019
).
23.
X.
Li
,
S.
Feng
,
Z.
Feng
,
S.
Pan
,
Y.
Lv
,
K.
Bai
,
X.
Lu
,
J.
Qin
, and
Y.
Zhang
, “
A thermal boundary resistance measurement method based on a designed chip with the heat source separated from the temperature sensor
,”
Appl. Phys. Lett.
122
,
073501
(
2023
).
24.
B.
Marchon
,
J.
Gui
,
K.
Grannen
,
G.
Rauch
,
J.
Ager
,
S.
Silva
, and
J.
Robertson
, “
Photoluminescence and Raman spectroscopy in hydrogenated carbon films
,”
IEEE Trans. Magn.
33
,
3148
3150
(
1997
).
25.
A. C.
Ferrari
and
J.
Robertson
, “
Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond
,”
Philos. Trans. R. Soc. London, Ser. A
362
,
2477
2512
(
2004
).
26.
C.
Casiraghi
,
A. C.
Ferrari
, and
J.
Robertson
, “
Raman spectroscopy of hydrogenated amorphous carbons
,”
Phys. Rev. B
72
,
085401
(
2005
).
27.
M.
Mohr
,
L.
Daccache
,
S.
Horvat
,
K.
Brühne
,
T.
Jacob
, and
H.-J.
Fecht
, “
Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films
,”
Acta Mater.
122
,
92
98
(
2017
).
28.
J.
Baima
,
A.
Zelferino
,
P.
Olivero
,
A.
Erba
, and
R.
Dovesi
, “
Raman spectroscopic features of the neutral vacancy in diamond from ab initio quantum-mechanical calculations
,”
Phys. Chem. Chem. Phys.
18
,
1961
1968
(
2016
).
29.
J.-L.
Wang
,
C.-K.
Chen
,
X.
Li
,
M.-Y.
Jiang
, and
X.-J.
Hu
, “
Influences of grain size and microstructure on optical properties of microcrystalline diamond films
,”
Chin. Phys. B
29
,
018103
(
2020
).
30.
X.
Kuang
,
J.
Tian
,
H.
Guo
,
Y.
Hou
,
H.
Zhang
, and
T.
Liu
, “
Feasible method to fabricate a nickel-nanodot mask on a silicon substrate with conventional thermal annealing
,”
Mater. Technol.
52
,
119
123
(
2018
).
31.
X.
Li
,
T.
Pu
,
L.
Li
, and
J.-P.
Ao
, “
Enhanced sensitivity of GaN-based temperature sensor by using the series Schottky barrier diode structure
,”
IEEE Electron Device Lett.
41
,
601
604
(
2020a
).
32.
X.
Li
,
T.
Pu
,
T.
Zhang
,
X.
Li
,
L.
Li
, and
J.-P.
Ao
, “
P-NiO/n-GaN heterostructure diode for temperature sensor application
,”
IEEE Sens. J.
20
,
62
66
(
2020b
).
33.
S. S.
Cohen
, “
Contact resistance and methods for its determination
,”
MRS Online Proc. Libr.
18
,
361
(
1982
).
34.
F.
Lüpke
,
D.
Cuma
,
S.
Korte
,
V.
Cherepanov
, and
B.
Voigtländer
, “
Four-point probe measurements using current probes with voltage feedback to measure electric potentials
,”
J. Phys.: Condens. Matter
30
,
054004
(
2018
).
35.
B.
Shi
,
H.
Zhang
, and
J.
Zhang
, “
Prediction of the contact thermal resistance of vertical carbon nanotube arrays
,”
Therm. Sci.
24
,
745
756
(
2020
).
36.
J. P.
Seddon
,
M.
Natrella
,
X.
Lin
,
C.
Graham
,
C. C.
Renaud
, and
A. J.
Seeds
, “
Photodiodes for terahertz applications
,”
IEEE J. Sel. Top. Quantum Electron.
28
,
1
12
(
2022
).
37.
D.
Schweitzer
,
H.
Pape
,
L.
Chen
,
R.
Kutscherauer
, and
M.
Walder
, “
Transient dual interface measurement—A new JEDEC standard for the measurement of the junction-to-case thermal resistance
,” in
27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
IEEE
,
2011
), pp.
222
229
.
38.
K. E.
Goodson
,
O. W.
Käding
,
M.
Rösler
, and
R.
Zachai
, “
Experimental investigation of thermal conduction normal to diamond-silicon boundaries
,”
J. Appl. Phys.
77
,
1385
1392
(
1995
).
39.
T.
Jeong
and
J.-G.
Zhu
, “
Thermal conductivity measurement of cobalt-iron thin films using the time-resolved thermoreflectance technique
,” in
Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
(
ASMEDC
,
San Francisco, CA
,
2009
), pp.
235
240
.
40.
X.
Jia
,
L.
Huang
,
M.
Sun
,
X.
Zhao
,
J.
Wei
, and
C.
Li
, “
The effect of interlayer microstructure on the thermal boundary resistance of GaN-on-diamond substrate
,”
Coatings
12
,
672
(
2022
).
41.
K.
Woo
,
M.
Malakoutian
,
Y.
Jo
,
X.
Zheng
,
T.
Pfeifer
,
R.
Mandia
,
T.
Hwang
,
H.
Aller
,
D.
Field
,
A.
Kasperovich
,
D.
Saraswat
,
D.
Smith
,
P.
Hopkins
,
S.
Graham
,
M.
Kuball
,
K.
Cho
, and
S.
Chowdhury
, “
Interlayer engineering to achieve <1 m2K/GW thermal boundary resistances to diamond for effective device cooling
,” in
2023 International Electron Devices Meeting (IEDM)
(
IEEE
,
2023
), pp.
1
4
.
42.
M.
Malakoutian
,
K.
Woo
,
D.
Rich
,
R.
Mandia
,
X.
Zheng
,
A.
Kasperovich
,
D.
Saraswat
,
R.
Soman
,
Y.
Jo
,
T.
Pfeifer
,
T.
Hwang
,
H.
Aller
,
J.
Kim
,
J.
Lyu
,
J. K.
Mabrey
,
T. A.
Rodriguez
,
J.
Pomeroy
,
P. E.
Hopkins
,
S.
Graham
,
D. J.
Smith
,
S.
Mitra
,
K.
Cho
,
M.
Kuball
, and
S.
Chowdhury
, “
Lossless phonon transition through GaN-diamond and Si-diamond interfaces
,”
Adv. Electron. Mater.
2400146
(
2024
).
You do not currently have access to this content.