Due to their unique compositional, structural, and morphological characteristics, hydrogen bonded two-dimensional (2D) layered materials and their one-dimensional tubular derivatives are endowed with great importance in the fields of both fundamental sciences and potential applications. In this work, γ-AlOOH nanotubes have been synthesized via a template-free one-step solvothermal alcoholysis method. The pressure response of the samples under static compression is investigated by in situ high-pressure angle dispersive synchrotron x-ray diffraction techniques. The results indicate that the compression behavior of nanotubes is different from those of its counterparts in the bulk and the nanoflake form. At pressures below 9.4 GPa, the unit-cell parameters a, b, and c decrease monotonously with pressure. In the pressure range of 10.6–19.9 GPa, an unexpected negative linear compressibility along the c-axis is observed experimentally in the compression behavior. When the high pressure is gradually released, it is evidenced that the compression of the prepared γ-AlOOH nanotubes is irreversible. The observed abnormal compression behavior and the unexpected negative linear compressibility may be explained by inflation associated with incorporation of the pressure transmitting medium within the interior cavity of the tubular nanostructures. Such a counter-intuitive phenomenon may find potential applications under high pressures.

1.
A.
Carvalho
,
M.
Wang
,
X.
Zhu
et al, “
Phosphorene: From theory to applications
,”
Nat. Rev. Mater.
1
,
16061
(
2016
).
2.
S.
Das
,
J. A.
Robinson
,
M.
Dubey
et al, “
Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids
,”
Annu. Rev. Mater. Res.
45
(
1
),
1
(
2015
).
3.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
,
183
(
2007
).
4.
M.
Naguib
,
V. N.
Mochalin
, and
M. W.
Barsoum
, “
25th Anniversary Article: MXenes: A new family of two-dimensional materials
,”
Adv. Mater.
26
,
992
(
2014
).
5.
K. S.
Novoselov
,
V. I.
Fal′ko
,
L.
Colombo
et al, “
A roadmap for graphene
,”
Nature
490
,
192
(
2012
).
6.
C. N. R.
Rao
and
U.
Maitra
, “
Inorganic graphene analogs
,”
Annu. Rev. Mater. Res.
45
,
29
(
2015
).
7.
D.
Chiche
,
M.
Digne
,
R.
Revel
et al, “
Determination of oxide nanoparticle size and shape based on X-ray powder pattern simulation: Application to boehmite AlOOH
,”
J. Phys. Chem. C
112
,
8524
(
2008
).
8.
C. E.
Corbato
,
R. T.
Tettenhorst
, and
G. G.
Christoph
, “
Structure refinement of deuterated boehmite
,”
Clays Clay Miner.
33
,
71
(
1985
).
9.
D.
Tunega
,
H.
Pasalić
,
M. H.
Gerzabek
et al, “
Theoretical study of structural, mechanical and spectroscopic properties of boehmite (γ-AlOOH)
,”
J. Phys.: Condens. Matter
23
,
404201
(
2011
).
10.
B.
Sun
,
Z.
Ji
,
Y.
Liao
et al, “
Enhanced immune adjuvant activity of aluminum oxyhydroxide nanorods through cationic surface functionalization
,”
ACS Appl. Mater. Interfaces
9
,
21697
(
2017
).
11.
J.
Xu
,
S.
Gai
,
F.
He
et al, “
A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: Fabrication and high supercapacitor performance
,”
J. Mater. Chem. A
2
,
1022
(
2014
).
12.
Z.
Xu
,
J.
Yu
,
J.
Low
et al, “
Microemulsion-assisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde
,”
ACS Appl. Mater. Interfaces
6
,
2111
(
2014
).
13.
Q.
Qin
,
T.
Kim
,
X.
Duan
et al, “
Novel synthesis strategy of γ-AlOOH nanotubes: Coupling reaction via ionic liquid-assisted hydrothermal route
,”
Cryst. Growth Des.
16
,
6139
(
2016
).
14.
Y.
Zhao
,
R. L.
Frost
,
W. N.
Martens
et al, “
Growth and surface properties of boehmite nanofibers and nanotubes at low temperatures using a hydrothermal synthesis route
,”
Langmuir
23
,
9850
(
2007
).
15.
C. L.
Lu
,
J. G.
Lv
,
L.
Xu
et al, “
Crystalline nanotubes of gamma-AlOOH and gamma-Al2O3: Hydrothermal synthesis, formation mechanism and catalytic performance
,”
Nanotechnology
20
,
215604
(
2009
).
16.
G. I.
Yucelen
,
D. Y.
Kang
,
R. C.
Guerrero-Ferreira
et al, “
Shaping single-walled metal oxide nanotubes from precursors of controlled curvature
,”
Nano Lett.
12
,
827
(
2012
).
17.
H.
Mao
,
X.
Chen
,
Y.
Ding
et al, “
Solids, liquids, and gases under high pressure
,”
Rev. Mod. Phys.
90
,
015007
(
2018
).
18.
L.
Zhang
,
Y.
Wang
,
J.
Lv
et al, “
Materials discovery at high pressures
,”
Nat. Rev. Mater.
2
,
17005
(
2017
).
19.
I.
Loa
, “
Raman spectroscopy on carbon nanotubes at high pressure
,”
J. Raman Spectrosc.
34
,
611
(
2003
).
20.
E. Y.
Pashkin
,
A. M.
Pankov
,
B. A.
Kulnitskiy
et al, “
The unexpected stability of multiwall nanotubes under high pressure and shear deformation
,”
Appl. Phys. Lett.
109
,
081904
(
2016
).
21.
Z.
Dong
and
Y.
Song
, “
Transformations of cold-compressed multiwalled boron nitride nanotubes probed by infrared spectroscopy
,”
J. Phys. Chem. C
114
,
1782
(
2010
).
22.
S.
Saha
,
D. V. S.
Muthu
,
D.
Golberg
et al, “
Comparative high pressure Raman study of boron nitride nanotubes and hexagonal boron nitride
,”
Chem. Phys. Lett.
421
,
86
(
2006
).
23.
M.
Stefanov
,
A. N.
Enyashin
,
T.
Heine
et al, “
Nanolubrication: How do MoS2-based nanostructures lubricate?
,”
J. Phys. Chem. C
112
,
17764
(
2008
).
24.
Y. Q.
Zhu
,
T.
Sekine
,
Y. H.
Li
et al, “
Shock-absorbing and failure mechanisms of WS2 and MoS2 nanoparticles with fullerene-like structures under shock wave pressure
,”
J. Am. Chem. Soc.
127
,
16263
(
2005
).
25.
X.
Zhou
,
J.
Zhang
,
Y.
Ma
et al, “
The solvothermal synthesis of gamma-AlOOH nanoflakes and their compression behaviors under high pressures
,”
RSC Adv.
7
,
4904
(
2017
).
26.
Y.
Ishii
,
K.
Komatsu
,
S.
Nakano
et al, “
Pressure-induced stacking disorder in boehmite
,”
Phys. Chem. Chem. Phys.
20
,
16650
(
2018
).
27.
H. K.
Mao
,
J.
Xu
, and
P. M.
Bell
, “
Calibration of the ruby pressure gage to 800 kbar under quasi-hydrostatic conditions
,”
J. Geophys. Res.
91
(
B
),
4673
, https://doi.org/10.1029/JB091iB05p04673 (
1986
).
28.
C.
Prescher
and
V. B.
Prakapenka
, “
DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration
,”
High Pressure Res.
35
,
223
(
2015
).
29.
B. H.
Toby
, “
EXPGUI, a graphical user interface for GSAS
,”
J. Appl. Crystallogr.
34
,
210
(
2001
).
30.
A. B.
Cairns
and
A. L.
Goodwin
, “
Negative linear compressibility
,”
Phys. Chem. Chem. Phys.
17
,
20449
(
2015
).
31.
R. H.
Baughman
,
S.
Stafstrom
,
C.
Cui
et al, “
Materials with negative compressibilities in one or more dimensions
,”
Science
279
,
1522
(
1998
).
32.
Q.
Zeng
,
K.
Wang
, and
B.
Zou
, “
Abnormal compressive behaviors of metal–organic frameworks under hydrostatic pressure
,”
Langmuir
38
,
9031
(
2022
).
You do not currently have access to this content.