We report on temperature-dependent dielectric behavior of disordered ternary A6B2O17 (A = Zr, Hf; B = Nb, Ta)-form oxides in the GHz frequency range. The microwave dielectric properties including relative permittivity, dielectric loss, and temperature-dependent relative permittivity were characterized using cylindrical dielectric resonators using a resonant post measurement technique. Dielectric measurements through the resonant post method approach generally agree with dielectric measurements of A6B2O17 bulk ceramics measured through standard resonant post techniques. Coefficients describing the temperature-dependent relative permittivity for ternary A6B2O17 phases are strongly positive, suggesting contributions to polarizability arising from long-range mechanisms potentially associated with structural disorder. These observations support the working hypothesis that material functionality can be engineered by the chemical diversity and structural disorder possible in high configurational entropy A6B2O17 phases.

1.
J.
Galy
and
R. S.
Roth
, “
The crystal structure of Nb2Zr6O17
,”
J. Solid State Chem.
7
,
277
(
1973
).
2.
S. J.
McCormack
and
W. M.
Kriven
, “
Crystal structure solution for the A6B2O17 (A = Zr, Hf; B = Nb, Ta) superstructure
,”
Acta Crystallogr.
75
,
227
(
2019
).
3.
A. A.
Voskanyan
,
K.
Lilova
,
S. J.
McCormack
,
W. M.
Kriven
, and
A.
Navrotsky
, “
A new class of entropy stabilized oxides: Commensurately modulated A6B2O17 (A = Zr, Hf; B = Nb, Ta) structures
,”
Scr. Mater.
204
,
114139
(
2021
).
4.
R. J.
Spurling
,
C.
Skidmore
,
N. S.
McIlwaine
, and
J.-P.
Maria
, “
Phase equilibria and metastability in the high-entropy A6B2O17 oxide family with A = Zr, Hf and B = Nb, Ta
,”
J. Mater. Sci.
58
,
6164
6173
(
2023
).
5.
Z. Y.
Tan
,
Z. H.
Yang
,
W.
Zhu
,
L.
Yang
,
Y. C.
Zhou
, and
X. P.
Hu
, “
Mechanical properties and calcium-magnesium-alumino-silicate (CMAS) corrosion behavior of a promising Hf6Ta2O17 ceramic for thermal barrier coatings
,”
Ceram. Int.
46
,
25242
(
2020
).
6.
H.
Li
,
Y.
Yu
,
B.
Fang
,
P.
Xiao
,
W.
Li
, and
S.
Wang
, “
Calcium-magnesium-alumina-silicate (CMAS) corrosion behavior of A6B2O17 (A=Zr, Hf; B=Nb, Ta) as potential candidate for thermal barrier coating (TBC)
,”
Corros. Sci.
204
,
110395
(
2022
).
7.
Q.
Yang
,
H.
Charalambous
,
E. M.
Sobalvarro
,
J.
Rivera
,
P. W. F.
Evans
,
J. T.
Cahill
,
W. L.
Du Frane
, and
J. D.
Kuntz
, “
Synthesis, sintering, and grain growth kinetics of Hf6Ta2O17
,”
J. Eur. Ceram. Soc.
43
,
4541
(
2023
).
8.
J. Y.
Wu
,
X. P.
Hu
,
S.
Liu
,
Q.
Liu
,
J. W.
Guo
,
S.
Wang
,
S.
Han
, and
W.
Zhu
, “
High-temperature mechanical properties and fracture mechanism of A6B2O17 (A= Hf, Zr; B= Ta, Nb) high-entropy ceramics
,”
J. Eur. Ceram. Soc.
44
,
3652
(
2024
).
9.
T.
Miruszewski
,
A.
Mielewczyk-Gryń
,
D.
Jaworski
,
W. F.
Rosenberg
,
S. J.
McCormack
, and
M.
Gazda
, “
Charge transport in the A6B2O17 (A = Zr, Hf; B = Nb, Ta) superstructure series
,”
J. Electrochem. Soc.
171
,
034503
(
2024
).
10.
R. J.
Spurling
,
S. S. I.
Almishal
,
J.
Casamento
,
J.
Hayden
,
R.
Spangler
,
M.
Marakovits
,
A.
Hossain
,
M.
Lanagan
, and
J.
Maria
, “
Dielectric properties of disordered A6B2O17 (A = Zr; B = Nb, Ta) phases
,”
J. Am. Ceram. Soc.
(published online 2024).
11.
R. J.
Spurling
, “
Entropy-inspired materials design for next-generation electroceramics
,”
Am. Ceram. Soc. Bull.
103
,
40
(
2024
).
12.
P. J.
Harrop
, “
Temperature coefficients of capacitance of solids
,”
J. Mater. Sci.
4
,
370
(
1969
).
13.
A.
Sarkar
,
B.
Breitung
, and
H.
Hahn
, “
High entropy oxides: The role of entropy, enthalpy and synergy
,”
Scr. Mater.
187
,
43
(
2020
).
14.
G. N.
Kotsonis
,
S. S. I.
Almishal
,
F. M.
dos Santos Vieira
,
V. H.
Crespi
,
I.
Dabo
,
C. M.
Rost
, and
J.-P.
Maria
, “
High-entropy oxides: Harnessing crystalline disorder for emergent functionality
,”
J. Am. Ceram. Soc.
106
,
5587
(
2023
).
15.
R. J.
Spurling
,
E. A.
Lass
,
X.
Wang
, and
K.
Page
, “
Entropy-driven phase transitions in complex ceramic oxides
,”
Phys. Rev. Mater.
6
,
090301
(
2022
).
16.
H.
Charalambous
,
M. H.
Jancich
,
P. W. F.
Evans
,
J.
Rivera
,
J. T.
Cahill
,
W. L.
Du Frane
,
J. D.
Kuntz
, and
B.
Yang
, “
Processing and characterization of the homologous ZrxTa2O2x+5 series
,”
Ceram. Int.
50
,
15848
(
2024
).
17.
B. W.
Hakki
and
P. D.
Coleman
, “
A dielectric resonator method of measuring inductive capacities in the millimeter range
,”
IEEE Trans. Microwave Theory Tech.
8
,
402
(
1960
).
18.
W.
Luo
,
J.
Guo
,
C.
Randall
, and
M.
Lanagan
, “
Effect of porosity and microstructure on the microwave dielectric properties of rutile
,”
Mater. Lett.
200
,
101
(
2017
).
19.
K.
Haines
,
T.
Neuberger
,
M.
Lanagan
,
E.
Semouchkina
, and
A. G.
Webb
, “
High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging
,”
J. Magn. Reson.
200
,
349
(
2009
).
20.
A. J.
Bosman
and
E. E.
Havinga
, “
Temperature dependence of dielectric constants of cubic ionic compounds
,”
Phys. Rev.
129
,
1593
(
1963
).
21.
D.
Liu
,
Y.
Liu
,
S.
Huang
, and
X.
Yao
, “
Phase structure and dielectric properties of Bi2O3-ZnO-Nb2O5-based dielectric ceramics
,”
J. Am. Ceram. Soc.
76
,
2129
(
1993
).
22.
X.
Wang
,
H.
Wang
, and
X.
Yao
, “
Structures, phase transformations, and dielectric properties of pyrochlores containing bismuth
,”
J. Am. Ceram. Soc.
80
,
2745
(
1997
).
23.
S.
Kamba
,
V.
Porokhonskyy
,
A.
Pashkin
,
V.
Bovtun
,
J.
Petzelt
,
J. C.
Nino
,
S.
Trolier-McKinstry
,
M. T.
Lanagan
, and
C. A.
Randall
, “
Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7 pyrochlore
,”
Phys. Rev. B
66
,
054106
(
2002
).
24.
H.
Youn
,
T.
Sogabe
,
C. A.
Randall
,
T. R.
Shrout
, and
M. T.
Lanagan
, “
Phase relations and dielectric properties in the Bi2O3–ZnO–Ta2O5 system
,”
J. Am. Ceram. Soc.
84
,
2557
(
2001
).
25.
H.
Stetson
and
B.
Schwartz
, “
Dielectric properties of zirconates
,”
J. Am. Ceram. Soc.
44
,
420
(
1961
).
26.
R. C.
Kell
,
A. C.
Greenham
, and
G. C. E.
Olds
, “
High-permittivity temperature-stable ceramic dielectrics with low microwave loss
,”
J. Am. Ceram. Soc.
56
,
352
(
1973
).
27.
E. L.
Colla
,
I. M.
Reaney
, and
N.
Setter
, “
Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity
,”
J. Appl. Phys.
74
,
3414
(
1993
).
28.
A. G.
Cockbain
and
P. J.
Harrop
, “
The temperature coefficient of capacitance
,”
J. Phys. D
1
,
1109
(
1968
).
29.
E. E.
Havinga
, “
The temperature dependence of dielectric constants
,”
J. Phys. Chem. Solids
18
,
253
(
1961
).
30.
M.
Gevers
, “
The relation between the power factor and the temperature coefficient of the dielectric constant of solid dielectrics
,”
Phillips Res. Rep.
1
,
279
(
1946
).
31.
A.
Hersping
, “
Zur temperaturabhangigkeit der dielektrizitatskonstanten in festen stoffen
,”
Z. Angew. Phys.
(unpublished) (
1966
).
You do not currently have access to this content.