High-TC cuprate superconductors' growth conditions and their incompatibility with some of the most standard nanofabrication approaches make their large-scale integration with 2D materials (such as graphene, transition metal dichalcogenides, and other Van der Waals materials) much more difficult than for conventional, metallic superconductors. Here, we address this challenge and develop an approach based on pulsed laser deposition that allows the growth of the 2D semiconductor MoS2 on the archetypal high-TC superconductor YBa2Cu3O7−x. This yields functional heterostructures in which the individual constituents' properties are preserved and that show superconducting coupling across their interface. The developed approach paves the way for large-scale 2D semiconductor co-integration with high-TC superconductors toward the study and leverage of the superconducting proximity effect in hybrid devices.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5696
),
666
669
(
2004
).
2.
S.
Das Sarma
,
S.
Adam
,
E. H.
Hwang
, and
E.
Rossi
, “
Electronic transport in two-dimensional graphene
,”
Rev. Mod. Phys.
83
(
2
),
407
(
2011
).
3.
R.
Wang
,
X.-G.
Ren
,
Z.
Yan
,
L.-J.
Jiang
,
W. E. I.
Sha
, and
G.-C.
Shan
, “
Graphene based functional devices: A short review
,”
Front. Phys.
14
,
13603
(
2019
).
4.
P.
Seneor
,
B.
Dlubak
,
M.-B.
Martin
,
A.
Anane
,
H.
Jaffres
, and
A.
Fert
, “
Spintronics with graphene
,”
MRS Bull.
37
(
12
),
1245
1254
(
2012
).
5.
S.
Manzeli
,
D.
Ovchinnikov
,
D.
Pasquier
,
O. V.
Yazyev
, and
A.
Kis
, “
2D transition metal dichalcogenides
,”
Nat. Rev. Mater.
2
(
8
),
17033
(
2017
).
6.
T.
Wang
,
H.
Wang
,
Z.
Kou
,
W.
Liang
,
X.
Luo
,
F.
Verpoort
,
Y.
Zeng
, and
H.
Zhang
, “
Xenes as an emerging 2D monoelemental family: Fundamental electrochemistry and energy applications
,”
Adv. Funct. Mater.
30
(
36
),
2002885
(
2020
).
7.
P.
Kumbhakar
,
C. C.
Gowda
,
P. L.
Mahapatra
,
M.
Mukherjee
,
K. D.
Malviya
,
M.
Chaker
,
A.
Chandra
,
B.
Lahiri
,
P. M.
Ajayan
, and
D.
Jariwala
, “
Emerging 2D metal oxides and their applications
,”
Mater. Today
45
,
142
168
(
2021
).
8.
C. W. J.
Beenakker
, “
Specular Andreev reflection in graphene
,”
Phys. Rev. Lett.
97
(
6
),
67007
(
2006
).
9.
H. B.
Heersche
,
P.
Jarillo-Herrero
,
J. B.
Oostinga
,
L. M. K.
Vandersypen
, and
A. F.
Morpurgo
, “
Bipolar supercurrent in graphene
,”
Nature
446
(
7131
),
56
59
(
2007
).
10.
C.
Girit
,
V.
Bouchiat
,
O.
Naaman
,
Y.
Zhang
,
M. F.
Crommie
,
A.
Zettl
, and
I.
Siddiqi
, “
Tunable graphene dc superconducting quantum interference device
,”
Nano Lett.
9
(
1
),
198
199
(
2009
).
11.
X.
Du
,
I.
Skachko
, and
E. Y.
Andrei
, “
Josephson current and multiple Andreev reflections in graphene SNS junctions
,”
Phys. Rev. B
77
(
18
),
184507
(
2008
).
12.
M.
Veldhorst
,
M.
Snelder
,
M.
Hoek
,
T.
Gang
,
V. K.
Guduru
,
X. L.
Wang
,
U.
Zeitler
,
W. G.
van der Wiel
,
A. A.
Golubov
, and
H.
Hilgenkamp
, “
Josephson supercurrent through a topological insulator surface state
,”
Nat. Mater.
11
(
5
),
417
421
(
2012
).
13.
C.
Kurter
,
A. D. K.
Finck
,
Y. S.
Hor
, and
D. J.
Van Harlingen
, “
Evidence for an anomalous current–phase relation in topological insulator Josephson junctions
,”
Nat. Commun.
6
(
1
),
7130
(
2015
).
14.
M.
Khezerlou
and
H.
Goudarzi
, “
Transport properties of spin-triplet superconducting monolayer MoS2
,”
Phys. Rev. B
93
(
11
),
115406
(
2016
).
15.
J. O.
Island
,
G. A.
Steele
,
H. S. J.
Van Der Zant
, and
A.
Castellanos-Gomez
, “
Thickness dependent interlayer transport in vertical MoS2 Josephson junctions
,”
2D Mater.
3
(
3
),
31002
(
2016
).
16.
M.
Ramezani
,
I. C.
Sampaio
,
K.
Watanabe
,
T.
Taniguchi
,
C.
Schonenberger
, and
A.
Baumgartner
, “
Superconducting contacts to a monolayer semiconductor
,”
Nano Lett.
21
(
13
),
5614
5619
(
2021
).
17.
A.
Seredinski
,
E. G.
Arnault
,
V. Z.
Costa
,
L.
Zhao
,
T. F. Q.
Larson
,
K.
Watanabe
,
T.
Taniguchi
,
F.
Amet
,
A. K. M.
Newaz
, and
G.
Finkelstein
, “
One-dimensional edge contact to encapsulated MoS2 with a superconductor
,”
AIP Adv.
11
(
4
),
045312
(
2021
).
18.
J.
Linder
and
A.
Sudbø
, “
Tunneling conductance in s-and d-wave superconductor-graphene junctions: Extended Blonder-Tinkham-Klapwijk formalism
,”
Phys. Rev. B
77
(
6
),
64507
(
2008
).
19.
D.
Perconte
,
D.
Bercioux
,
B.
Dlubak
,
P.
Seneor
,
F. S.
Bergeret
, and
J. E.
Villegas
, “
Superconducting proximity effect in d‐wave cuprate/graphene heterostructures
,”
Ann. Phys.
534
(
8
),
2100559
(
2022
).
20.
A.
Di Bernardo
,
O.
Millo
,
M.
Barbone
,
H.
Alpern
,
Y.
Kalcheim
,
U.
Sassi
,
A. K.
Ott
,
D.
De Fazio
,
D.
Yoon
, and
M.
Amado
, “
p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor
,”
Nat. Commun.
8
(
1
),
14024
(
2017
).
21.
T.
Li
,
J.
Gallop
,
L.
Hao
, and
E.
Romans
, “
Ballistic Josephson junctions based on CVD graphene
,”
Supercond. Sci. Technol.
31
(
4
),
045004
(
2018
).
22.
T.
Ito
,
K.
Takenaka
, and
S.
Uchida
, “
Systematic deviation from T-linear behavior in the in-plane resistivity of YBa2Cu3O7-y: Evidence for dominant spin scattering
,”
Phys. Rev. Lett.
70
(
25
),
3995
3998
(
1993
).
23.
D.
Perconte
,
F. A.
Cuellar
,
C.
Moreau-Luchaire
,
M.
Piquemal-Banci
,
R.
Galceran
,
P. R.
Kidambi
,
M. B.
Martin
,
S.
Hofmann
,
R.
Bernard
,
B.
Dlubak
,
P.
Seneor
, and
J. E.
Villegas
, “
Tunable Klein-like tunnelling of high-temperature superconducting pairs into graphene
,”
Nat. Phys.
14
(
1
),
25
29
(
2018
).
24.
D.
Perconte
,
K.
Seurre
,
V.
Humbert
,
C.
Ulysse
,
A.
Sander
,
J.
Trastoy
,
V.
Zatko
,
F.
Godel
,
P. R.
Kidambi
,
S.
Hofmann
,
X. P.
Zhang
,
D.
Bercioux
,
F. S.
Bergeret
,
B.
Dlubak
,
P.
Seneor
, and
J. E.
Villegas
, “
Long-range propagation and interference of d-wave superconducting pairs in graphene
,”
Phys. Rev. Lett.
125
(
8
),
87002
(
2020
).
25.
S.
Jois
,
J. L.
Lado
,
G.
Gu
,
Q.
Li
, and
J. U.
Lee
, “
Andreev reflection and Klein tunneling in high-temperature superconductor-graphene junctions
,”
Phys. Rev. Lett.
130
(
15
),
156201
(
2023
).
26.
E.
Wang
,
H.
Ding
,
A. V.
Fedorov
,
W.
Yao
,
Z.
Li
,
Y.-F.
Lv
,
K.
Zhao
,
L.-G.
Zhang
,
Z.
Xu
, and
J.
Schneeloch
, “
Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor
,”
Nat. Phys.
9
(
10
),
621
625
(
2013
).
27.
J. A.
Greer
, “
High quality YBCO films grown over large areas by pulsed laser deposition
,”
J. Vac. Sci. Technol. A
10
(
4
),
1821
(
1992
).
28.
D. Q.
Shi
,
R. K.
Ko
,
K. J.
Song
,
J. K.
Chung
,
S. J.
Choi
,
Y. M.
Park
,
K. C.
Shin
,
S. I.
Yoo
, and
C.
Park
, “
Effects of deposition rate and thickness on the properties of YBCO films deposited by pulsed laser deposition
,”
Supercond. Sci. Technol.
17
(
2
),
S42
(
2004
).
29.
F.
Godel
,
V.
Zatko
,
C.
Carrétéro
,
A.
Sander
,
M.
Galbiati
,
A.
Vecchiola
,
P.
Brus
,
O.
Bezencenet
,
B.
Servet
,
M. B.
Martin
,
B.
Dlubak
, and
P.
Seneor
, “
WS2 2D semiconductor down to monolayers by pulsed-laser deposition for large-scale integration in electronics and spintronics circuits
,”
ACS Appl. Nano Mater.
3
(
8
),
7908
(
2020
).
30.
V.
Zatko
,
S. M.-M.
Dubois
,
F.
Godel
,
C.
Carrétéro
,
A.
Sander
,
S.
Collin
,
M.
Galbiati
,
J.
Peiro
,
F.
Panciera
, and
G.
Patriarche
, “
Band-gap landscape engineering in large-scale 2D semiconductor van der Waals heterostructures
,”
ACS Nano
15
(
4
),
7279
7289
(
2021
).
31.
J. P.
Sydow
, “
Effects of oxygen content on YBCO Josephson junction structures
,”
IEEE Trans. Appl. Supercond.
9
(
2 PART 3
),
2993
2996
(
1999
).
32.
R.
El Hage
,
D.
Sánchez-Manzano
,
V.
Humbert
,
S.
Carreira
,
V.
Rouco
,
A.
Sander
,
F.
Cuellar
,
K.
Seurre
,
A.
Lagarrigue
,
S.
Mesoraca
,
J.
Briatico
,
J.
Trastoy
,
J.
Santamaría
, and
J. E.
Villegas
, “
Disentangling photodoping, photoconductivity, and photosuperconductivity in the cuprates
,”
Phys. Rev. Lett.
132
(
6
),
066001
(
2024
).
33.
P.
Joensen
,
R. F.
Frindt
, and
S. R.
Morrison
, “
Single-layer MoS2
,”
Mater. Res. Bull.
21
(
4
),
457
461
(
1986
).
34.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
, “
Anomalous lattice vibrations of single- and few-layer MoS2
,”
ACS Nano
4
(
5
),
2695
2700
(
2010
).
35.
V.
Rouco
,
R.
El Hage
,
A.
Sander
,
J.
Grandal
,
K.
Seurre
,
X.
Palermo
,
J.
Briatico
,
S.
Collin
,
J.
Trastoy
,
K.
Bouzehouane
,
A. I.
Buzdin
,
G.
Singh
,
N.
Bergeal
,
C.
Feuillet-Palma
,
J.
Lesueur
,
C.
Leon
,
M.
Varela
,
J.
Santamaría
, and
J. E.
Villegas
, “
Quasiparticle tunnel electroresistance in superconducting junctions
,”
Nat. Commun.
11
(
1
),
658
(
2020
).
36.
R.
El Hage
,
V.
Humbert
,
V.
Rouco
,
G.
Sánchez-Santolino
,
A.
Lagarrigue
,
K.
Seurre
,
S. J.
Carreira
,
A.
Sander
,
J.
Charliac
,
S.
Mesoraca
,
J.
Trastoy
,
J.
Briatico
,
J.
Santamaría
, and
J. E.
Villegas
, “
Bimodal ionic photomemristor based on a high-temperature oxide superconductor/semiconductor junction
,”
Nat. Commun.
14
(
1
),
3010
(
2023
).
37.
C.
Visani
,
Z.
Sefrioui
,
J.
Tornos
,
C.
Leon
,
J.
Briatico
,
M.
Bibes
,
A.
Barthélémy
,
J.
Santamaria
, and
J. E.
Villegas
, “
Equal-spin Andreev reflection and long-range coherent transport in high-temperature superconductor/half-metallic ferromagnet junctions
,”
Nat. Phys.
8
(
7
),
539
543
(
2012
).
38.
G.
Deutscher
, “
Andreev–Saint-James reflections: A probe of cuprate superconductors
,”
Rev. Mod. Phys.
77
(
1
),
109
135
(
2005
).
39.
S.
Kashiwaya
and
Y.
Tanaka
, “
Theory for tunneling spectroscopy of anisotropic superconductors
,”
Phys. Rev. B
53
(
5
),
2667
(
1996
).
40.
G. E.
Blonder
,
M.
Tinkham
, and
T. M.
Klapwijk
, “
Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion
,”
Phys. Rev. B
25
(
7
),
4515
(
1982
).
41.
M. Y.
Kupriyanov
and
K. K.
Likharev
, “
Josephson effect in high-temperature superconductors and in structures based on them
,”
Sov. Phys. Usp.
33
(
5
),
340
(
1990
).
42.
R.
Baghdadi
,
S.
Abay
,
D.
Golubev
,
T.
Bauch
, and
F.
Lombardi
, “
Josephson effect through YBa2Cu3O7-δ/Au-encapsulated nanogaps
,”
Phys. Rev. B
95
(
17
),
174510
(
2017
).
43.
D.
Crété
,
Y.
Lemaître
,
B.
Marcilhac
,
E.
Recoba-Pawlowski
,
J.
Trastoy
, and
C.
Ulysse
, “
Optimal SQUID loop size in arrays of HTS SQUIDs
,”
J. Phys.: Conf. Ser.
1559
,
012012
(
2020
).
You do not currently have access to this content.