The Josephson effect is a hallmark signature of the superconducting state, which, however, has been sparsely explored in non-crystalline superconducting materials. Motivated by this, we consider a Josephson junction consisting of two superconductors with a fractal metallic interlayer, which is patterned as a Sierpiński carpet by removing atomic sites in a self-similar and scale-invariant manner. We here show that the fractal geometry has direct observable consequences on the Josephson effect. In particular, we demonstrate that the form of the supercurrent–magnetic field relation as the fractal generation number increases can be directly related to the self-similar fractal geometry of the normal metallic layer. Furthermore, the maxima of the corresponding diffraction pattern directly encode the self-repeating fractal structure in the course of fractal generation, implying that the corresponding magnetic length directly probes the shortest length scale in the given fractal generation. Our results should motivate future experimental efforts to verify these predictions in designer quantum materials and motivate future pursuits regarding fractal-based SQUID devices.

1.
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
W.H. Freeman and Co.
,
1982
).
2.
D. R.
Hofstadter
, “
Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields
,”
Phys. Rev. B
14
,
2239
2249
(
1976
).
3.
C. M.
Soukoulis
and
E. N.
Economou
, “
Fractal character of eigenstates in disordered systems
,”
Phys. Rev. Lett.
52
,
565
568
(
1984
).
4.
M.
Schreiber
and
H.
Grussbach
, “
Multifractal wave functions at the Anderson transition
,”
Phys. Rev. Lett.
67
,
607
610
(
1991
).
5.
Y.
Gefen
,
B. B.
Mandelbrot
, and
A.
Aharony
, “
Critical phenomena on fractal lattices
,”
Phys. Rev. Lett.
45
,
855
858
(
1980
).
6.
Y.
Gefen
,
A.
Aharony
,
Y.
Shapir
, and
B. B.
Mandelbrot
, “
Phase transitions on fractals. II. Sierpiński gaskets
,”
J. Phys. A
17
,
435
(
1984
).
7.
Y.
Gefen
,
A.
Aharony
, and
S.
Alexander
, “
Anomalous diffusion on percolating clusters
,”
Phys. Rev. Lett.
50
,
77
80
(
1983
).
8.
J.
Shang
,
Y.
Wang
,
M.
Chen
,
J.
Dai
,
X.
Zhou
,
J.
Kuttner
,
G.
Hilt
,
X.
Shao
,
J. M.
Gottfried
, and
K.
Wu
, “
Assembling molecular Sierpiński triangle fractals
,”
Nat. Chem.
7
,
389
393
(
2015
).
9.
S. N.
Kempkes
,
M. R.
Slot
,
S. E.
Freeney
,
S. J. M.
Zevenhuizen
,
D.
Vanmaekelbergh
,
I.
Swart
, and
C. M.
Smith
, “
Design and characterization of electrons in a fractal geometry
,”
Nat. Phys.
15
,
127
131
(
2019
).
10.
M.
Brzezińska
,
A. M.
Cook
, and
T.
Neupert
, “
Topology in the Sierpiński–Hofstadter problem
,”
Phys. Rev. B
98
,
205116
(
2018
).
11.
S.
Pai
and
A.
Prem
, “
Topological states on fractal lattices
,”
Phys. Rev. B
100
,
155135
(
2019
).
12.
A. A.
Iliasov
,
M. I.
Katsnelson
, and
S.
Yuan
, “
Hall conductivity of a Sierpiński carpet
,”
Phys. Rev. B
101
,
045413
(
2020
).
13.
S.
Manna
,
B.
Pal
,
W.
Wang
, and
A. E. B.
Nielsen
, “
Anyons and fractional quantum Hall effect in fractal dimensions
,”
Phys. Rev. Res.
2
,
023401
(
2020
).
14.
M.
Fremling
,
M.
van Hooft
,
C. M.
Smith
, and
L.
Fritz
, “
Existence of robust edge currents in Sierpiński fractals
,”
Phys. Rev. Res.
2
,
013044
(
2020
).
15.
Z.
Yang
,
E.
Lustig
,
Y.
Lumer
, and
M.
Segev
, “
Photonic Floquet topological insulators in a fractal lattice
,”
Light: Sci. Appl.
9
,
128
(
2020
).
16.
S.
Manna
,
C. W.
Duncan
,
C. A.
Weidner
,
J. F.
Sherson
, and
A. E. B.
Nielsen
, “
Anyon braiding on a fractal lattice with a local Hamiltonian
,”
Phys. Rev. A
105
,
L021302
(
2022
).
17.
S.
Manna
,
S.
Nandy
, and
B.
Roy
, “
Higher-order topological phases on fractal lattices
,”
Phys. Rev. B
105
,
L201301
(
2022
).
18.
M. N.
Ivaki
,
I.
Sahlberg
,
K.
Pöyhönen
, and
T.
Ojanen
, “
Topological random fractals
,”
Commun. Phys.
5
,
327
(
2022
).
19.
S.
Manna
and
B.
Roy
, “
Inner skin effects on non-Hermitian topological fractals
,”
Commun. Phys.
6
,
10
(
2023
).
20.
X.-B.
Wang
,
J.-X.
Li
,
Q.
Jiang
,
Z.-H.
Zhang
, and
D.-C.
Tian
, “
Effect of fractons in superconductors with fractal structure
,”
Phys. Rev. B
49
,
9778
9781
(
1994
).
21.
M.
Ausloos
,
C.
Laurent
,
S. K.
Patapis
,
C.
Politis
,
H. L.
Luo
,
P. A.
Godelaine
,
F.
Gillet
,
A.
Dang
, and
R.
Cloots
, “
Superconductivity fluctuations in Bi(Pb) based granular ceramics superconductors: Evidence for fractal behavior
,”
Z. Phys. B
83
,
355
359
(
1991
).
22.
Z.
Bak
, “
Superconductivity in a system of fractional spectral dimension
,”
Phys. Rev. B
68
,
064511
(
2003
).
23.
C. K.
Kim
,
A.
Rakhimov
, and
J. H.
Yee
, “
Ginzburg–Landau theory of superconductivity at fractal dimensions
,”
Phys. Rev. B
71
,
024518
(
2005
).
24.
M.
Feigel'man
,
L.
Ioffe
,
V.
Kravtsov
, and
E.
Cuevas
, “
Fractal superconductivity near localization threshold
,”
Ann. Phys.
325
,
1390
1478
(
2010
).
25.
M.
Sun
,
T.
Čadež
,
I.
Yurkevich
, and
A.
Andreanov
, “
Enhancement of superconductivity in the Fibonacci chain
,”
Phys. Rev. B
109
,
134504
(
2024
).
26.
N.
Poccia
,
A.
Ricci
, and
A.
Bianconi
, “
Fractal structure favoring superconductivity at high temperatures in a stack of membranes near a strain quantum critical point
,”
J. Supercond. Novel Magn.
24
,
1195
1200
(
2011
).
27.
R.
Meyer
,
S. E.
Korshunov
,
C.
Leemann
, and
P.
Martinoli
, “
Dimensional crossover and hidden incommensurability in Josephson junction arrays of periodically repeated Sierpiński gaskets
,”
Phys. Rev. B
66
,
104503
(
2002
).
28.
S. T.
Kingni
,
G. F.
Kuiate
,
V. K.
Tamba
,
A. V.
Monwanou
, and
J. B. C.
Orou
, “
Analysis of a fractal Josephson junction with unharmonic current–phase relation
,”
J. Supercond. Novel Magn.
32
,
2295
2301
(
2019
).
29.
S.
Manna
,
S. K.
Das
, and
B.
Roy
, “
Noncrystalline topological superconductors
,”
Phys. Rev. B
109
,
174512
(
2024
).
30.
A. A.
Iliasov
,
M. I.
Katsnelson
, and
A. A.
Bagrov
, “
Strong enhancement of superconductivity on finitely ramified fractal lattices
,” arXiv:2310.11497 (
2024
).
31.
B.
Josephson
, “
Possible new effects in superconductive tunnelling
,”
Phys. Lett.
1
,
251
253
(
1962
).
32.
A. A.
Golubov
,
M. Y.
Kupriyanov
, and
E.
Il'ichev
, “
The current–phase relation in Josephson junctions
,”
Rev. Mod. Phys.
76
,
411
469
(
2004
).
33.
S. P.
Kruchinin
,
V. F.
Klepikov
,
V. E.
Novikov
, and
D. S.
Kruchinin
, “
Nonlinear current oscillations in the fractal Josephson junction
,”
Mater. Sci.-Poland.
23
,
1009
(
2005
).
34.
J.
Bardeen
,
L. N.
Cooper
, and
J. R.
Schrieffer
, “
Theory of superconductivity
,”
Phys. Rev.
108
,
1175
1204
(
1957
).
35.
R. C.
Dynes
and
T. A.
Fulton
, “
Supercurrent density distribution in Josephson junctions
,”
Phys. Rev. B
3
,
3015
3023
(
1971
).
36.
N.
Cohen
, “
Fractal antennas and fractal resonators
,” US Patent 6452553 (
1995
).
37.
N.
Cohen
, “
Fractal antenna applications in wireless telecommunications
,” in
Professional Program Proceedings. Electronic Industries Forum of New England
,
1997
.
38.
D.
Werner
and
S.
Ganguly
, “
An overview of fractal antenna engineering research
,”
IEEE Antennas Propag. Mag.
45
,
38
57
(
2003
).
You do not currently have access to this content.