Skyrmions are intriguing quasiparticles in the field of condensed matter due to their unique physics and promising applications in spintronic devices. However, despite abundant studies on skyrmions with a topological charge of Q = 1, there have been only few on those with higher Q ( 2 ) due to their intrinsic instability in Dzyaloshinskii–Moriya interaction (DMI) systems. In this work, applying the frustrated J 1 J 2 Heisenberg spin model, we investigate the stability of high-Q skyrmions and the manipulation of their diameters in a hexagonal close-packed lattice through atomistic simulations and first-principles calculations. First, three spin textures, called spiral, skyrmion, and ferromagnetic, are identified by varying ( J 1 , J 2 ), and it is shown that skyrmions with higher Q can occupy a wider range of ( J 1 , J 2 ) values. The diameter of the skyrmions can then be finely tuned using the frustration strength ( | J 2 / J 1 | ), the single-ion anisotropy (K), and an external magnetic field (B). As B increases, the high-Q skyrmions split into skyrmions with smaller Q and can be annihilated by a larger B. Furthermore, we find that the CoCl2 monolayer satisfies the criteria for a frustrated J 1 J 2 magnet, and its magnetic behaviors align with the aforementioned conclusions. In addition, high-Q skyrmions are identified in the CoCl2 monolayer, and the corresponding energy barriers for skyrmion collapse are investigated. Our findings pave the way for prospective spintronic applications based on high-Q and nanoscale skyrmionic textures.

1.
S.
Mühlbauer
,
B.
Binz
,
F.
Jonietz
,
C.
Pfleiderer
,
A.
Rosch
,
A.
Neubauer
,
R.
Georgii
, and
P.
Böni
, “
Skyrmion lattice in a chiral magnet
,”
Science
323
,
915
919
(
2009
).
2.
X. Z.
Yu
,
Y.
Onose
,
N.
Kanazawa
,
J. H.
Park
,
J. H.
Han
,
Y.
Matsui
,
N.
Nagaosa
, and
Y.
Tokura
, “
Real-space observation of a two-dimensional skyrmion crystal
,”
Nature
465
,
901
904
(
2010
).
3.
Y.
Tokura
and
N.
Kanazawa
, “
Magnetic skyrmion materials
,”
Chem. Rev.
121
,
2857
2897
(
2021
).
4.
G.
Yu
,
P.
Upadhyaya
,
Q.
Shao
,
H.
Wu
,
G.
Yin
,
X.
Li
,
C.
He
,
W.
Jiang
,
X.
Han
,
P. K.
Amiri
, and
K. L.
Wang
, “
Room-temperature skyrmion shift device for memory application
,”
Nano Lett.
17
,
261
(
2017
).
5.
W.
Kang
,
C.
Zheng
,
Y.
Huang
,
X.
Zhang
,
W.
Lv
,
Y.
Zhou
, and
W.
Zhao
, “
Compact modeling and evaluation of magnetic skyrmion-based racetrack memory
,”
IEEE Trans. Electron Devices
64
,
1060
1068
(
2017
).
6.
X.
Zhang
,
Y.
Zhou
,
M.
Ezawa
,
G. P.
Zhao
, and
W.
Zhao
, “
Magnetic skyrmion transistor: Skyrmion motion in a voltage-gated nanotrack
,”
Sci. Rep.
5
,
11369
(
2015
).
7.
K.
Kita
,
D. W.
Abraham
,
M. J.
Gajek
, and
D. C.
Worledge
, “
Electric-field-control of magnetic anisotropy of Co 0.6 Fe 0.2 B 0.2 / oxide stacks using reduced voltage
,”
J. Appl. Phys.
112
,
033919
(
2012
).
8.
A. J.
Schellekens
,
A.
van den Brink
,
J. H.
Franken
,
H. J.
Swagten
, and
B.
Koopmans
, “
Electric-field control of domain wall motion in perpendicularly magnetized materials
,”
Nat. Commun.
3
,
847
(
2012
).
9.
Y.
Shiota
,
S.
Murakami
,
F.
Bonell
,
T.
Nozaki
,
T.
Shinjo
, and
Y.
Suzuki
, “
Quantitative evaluation of voltage-induced magnetic anisotropy change by magnetoresistance measurement
,”
Appl. Phys. Express
4
,
043005
(
2011
).
10.
Y.
Huang
,
W.
Kang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
, “
Magnetic skyrmion-based synaptic devices
,”
Nanotechnology
28
,
08LT02
(
2017
).
11.
S.
Li
,
W.
Kang
,
Y.
Huang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
, “
Magnetic skyrmion-based artificial neuron device
,”
Nanotechnology
28
,
31LT01
(
2017
).
12.
X.
Yao
,
D.
Hu
, and
S.
Dong
, “
Modulation of skyrmionic magnetic textures in two-dimensional vdW materials and their heterostructures
,”
iScience
26
,
106311
(
2023
).
13.
Z.
Shen
,
S.
Dong
, and
X.
Yao
, “
Manipulation of magnetic topological textures via perpendicular strain and polarization in van der Waals magnetoelectric heterostructures
,”
Phys. Rev. B
108
,
L140412
(
2023
).
14.
Q.
Cui
,
J.
Liang
,
Z.
Shao
,
P.
Cui
, and
H.
Yang
, “
Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides
,”
Phys. Rev. B
102
,
094425
(
2020
).
15.
Y.
Nagaosa
and
N.
Tokura
, “
Topological properties and dynamics of magnetic skyrmions
,”
Nat. Nanotechnol.
8
,
899
911
(
2013
).
16.
C.
Xu
,
J.
Feng
,
S.
Prokhorenko
,
Y.
Nahas
,
H.
Xiang
, and
L.
Bellaiche
, “
Topological spin texture in Janus monolayers of the chromium trihalides Cr ( I , X)3
,”
Phys. Rev. B
101
,
060404(R)
(
2020
).
17.
Y.
Ga
,
Q.
Cui
,
Y.
Zhu
,
D.
Yu
,
L.
Wang
,
J.
Liang
, and
H.
Yang
, “
Anisotropic Dzyaloshinskii Moriya interaction protected by D 2 d crystal symmetry in two-dimensional ternary compounds
,”
npj Comput. Mater.
8
,
128
(
2022
).
18.
Q.
Cui
,
Y.
Zhu
,
Y.
Ga
,
J.
Liang
,
P.
Li
,
D.
Yu
,
P.
Cui
, and
H.
Yang
, “
Anisotropic Dzyaloshinskii Moriya interaction and topological magnetism in two-dimensional magnets protected by p 4 ¯ m 2 crystal symmetry
,”
Nano Lett.
22
,
2334
2341
(
2022
).
19.
R.
Sharma
and
S. K.
Mishra
, “
Interfacial skyrmion in magnetic thin films and its applications
,”
J. Magn. Magn. Mater.
551
,
169107
(
2022
).
20.
M.
Shen
,
X.
Li
,
Y.
Zhang
,
X.
Yang
, and
S.
Chen
, “
Effects of the interfacial Dzyaloshinskii–Moriya interaction on magnetic dynamics
,”
J. Phys. D: Appl. Phys.
55
,
213002
(
2022
).
21.
I.
Dzyaloshinsky
, “
A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics
,”
J. Phys. Chem. Solids
4
,
241
255
(
1958
).
22.
T.
Moriya
, “
Anisotropic superexchange interaction and weak ferromagnetism
,”
Phys. Rev.
120
,
91
(
1960
).
23.
X.
Zhang
,
Y.
Zhou
, and
M.
Ezawa
, “
High-topological-number magnetic skyrmions and topologically protected dissipative structure
,”
Phys. Rev. B
93
,
024415
(
2016
).
24.
Y.
Zhou
, “
Magnetic skyrmions: Intriguing physics and new spintronic device concepts
,”
Natl. Sci. Rev.
6
,
210
212
(
2019
).
25.
X.
Zhang
,
J.
Xia
,
Y.
Zhou
,
X.
Liu
,
H.
Zhang
, and
M.
Ezawa
, “
Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition
,”
Nat. Commun.
8
,
1717
(
2017
).
26.
A. O.
Leonov
and
M.
Mostovoy
, “
Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet
,”
Nat. Commun.
6
,
8275
(
2015
).
27.
J. J.
Liang
,
J. H.
Yu
,
J.
Chen
,
M. H.
Qin
,
M.
Zeng
,
X. B.
Lu
,
X. S.
Gao
, and
J.
Liu
, “
Magnetic field gradient driven dynamics of isolated skyrmions and antiskyrmions in frustrated magnets
,”
New J. Phys.
20
,
053037
(
2018
).
28.
Z.
Hou
,
Q.
Zhang
,
X.
Zhang
,
G.
Xu
,
J.
Xia
,
B.
Ding
,
H.
Li
,
S.
Zhang
,
N. M.
Batra
,
P.
Costa
,
E.
Liu
,
G.
Wu
,
M.
Ezawa
,
X.
Liu
,
Y.
Zhou
,
X.
Zhang
, and
W.
Wang
, “
Current-induced helicity reversal of a single skyrmionic bubble chain in a nanostructured frustrated magnet
,”
Adv. Mater.
32
,
1904815
(
2020
).
29.
M.
Miyata
,
J. I.
Ohe
, and
G.
Tatara
, “
Topological charge control of skyrmion structure in frustrated magnets by circularly polarized light
,”
Phys. Rev. Appl.
18
,
014075
(
2022
).
30.
A. O.
Leonov
and
M.
Mostovoy
, “
Edge states and skyrmion dynamics in nanostripes of frustrated magnets
,”
Nat. Commun.
8
,
14394
(
2017
).
31.
X.
Yao
and
S.
Dong
, “
Vector vorticity of skyrmionic texture: An internal degree of freedom tunable by magnetic field
,”
Phys. Rev. B
105
,
014444
(
2022
).
32.
X.
Zhang
,
J.
Xia
,
L.
Shen
,
M.
Ezawa
,
O. A.
Tretiakov
,
G.
Zhao
,
X.
Liu
, and
Y.
Zhou
, “
Static and dynamic properties of bimerons in a frustrated ferromagnetic monolayer
,”
Phys. Rev. B
101
,
144435
(
2020
).
33.
X.
Yao
,
J.
Chen
, and
S.
Dong
, “
Controlling the helicity of magnetic skyrmions by electrical field in frustrated magnets
,”
New J. Phys.
22
,
083032
(
2020
).
34.
H. Y.
Yuan
,
O.
Gomonay
, and
M.
Kläui
, “
Skyrmions and multisublattice helical states in a frustrated chiral magnet
,”
Phys. Rev. B
96
,
134415
(
2017
).
35.
J.
Xia
,
X.
Zhang
,
X.
Liu
,
Y.
Zhou
, and
M.
Ezawa
, “
Universal quantum computation based on nanoscale skyrmion helicity qubits in frustrated magnets
,”
Phys. Rev. Lett.
130
,
106701
(
2023
).
36.
B.
Berge
,
H. T.
Diep
,
A.
Ghazali
, and
P.
Lallemand
, “
Phase transitions in two-dimensional uniformly frustrated X Y spin systems
,”
Phys. Rev. B
34
,
3177
3184
(
1986
).
37.
U.
Schlickum
,
N.
Janke-Gilman
,
W.
Wulfhekel
, and
J.
Kirschner
, “
Step-induced Frustration of Antiferromagnetic Order in Mn on Fe (001)
,”
Phys. Rev. Lett.
92
,
107203
(
2004
).
38.
S. E.
Palmer
and
J. T.
Chalker
, “
Order induced by dipolar interactions in a geometrically frustrated antiferromagnet
,”
Phys. Rev. B
62
,
488
492
(
2000
).
39.
I. F.
Sharafullin
and
H. T.
Diep
, “
Skyrmion crystals and phase transitions in magneto-ferroelectric superlattices: Dzyaloshinskii Moriya interaction in a frustrated J 1 J 2 model
,”
Symmetry
12
,
26
(
2019
).
40.
M.
Kleiber
,
M.
Bode
,
R.
Ravlić
, and
R.
Wiesendanger
, “
Topology-induced spin frustrations at the Cr (001) surface studied by spin-polarized scanning tunneling spectroscopy
,”
Phys. Rev. Lett.
85
,
4606
4609
(
2000
).
41.
S. A.
Owerre
, “
Topological thermal hall effect in frustrated kagome antiferromagnets
,”
Phys. Rev. B
95
,
014422
(
2017
).
42.
J. E.
Shea
,
J. N.
Onuchic
, and
C. L
Brooks
III
, “
Exploring the origins of topological frustration: Design of a minimally frustrated model of fragment B of protein A
,”
Proc. Natl. Acad. Sci. U. S. A.
96
,
12512
12517
(
1999
).
43.
R.
Ozawa
,
S.
Hayami
, and
Y.
Motome
, “
Zero-field skyrmions with a high topological number in itinerant magnets
,”
Phys. Rev. Lett.
118
,
147205
(
2017
).
44.
T.
Westerhout
,
N.
Astrakhantsev
,
K. S.
Tikhonov
,
M. I.
Katsnelson
, and
A. A.
Bagrov
, “
Generalization properties of neural network approximations to frustrated magnet ground states
,”
Nat. Commun.
11
,
1593
(
2020
).
45.
H.
Mosadeq
,
F.
Shahbazi
, and
S. A.
Jafari
, “
Plaquette valence bond ordering in a J 1 J 2 Heisenberg antiferromagnet on a honeycomb lattice
,”
J. Phys.: Condens. Matter
23
,
226006
(
2011
).
46.
S.-Z.
Lin
and
S.
Hayami
, “
Ginzburg-landau theory for skyrmions in inversion-symmetric magnets with competing interactions
,”
Phys. Rev. B
93
,
064430
(
2016
).
47.
G. P.
Müller
,
M.
Hoffmann
,
C.
Dißelkamp
,
D.
Schürhoff
,
S.
Mavros
,
M.
Sallermann
,
N. S.
Kiselev
,
H.
Jónsson
, and
S.
Blügel
, “
Spirit: Multifunctional framework for atomistic spin simulations
,”
Phys. Rev. B
99
,
224414
(
2019
).
48.
L. D.
Landau
and
E. M.
Lifshitz
, “
On the theory of the dispersion of magnetic permeability in ferromagnetic bodies
,”
Phys. Z. Sowjetunion
8
,
51
65
(
1935
).
49.
T. L.
Gilbert
, “
Classics in magnetics a phenomenological theory of damping in ferromagnetic materials
,”
IEEE Trans. Magn.
40
,
3443
3449
(
2004
).
50.
P. F.
Bessarab
,
V. M.
Uzdin
, and
H.
Jónsson
, “
Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation
,”
Comput. Phys. Commun.
196
,
335
(
2015
).
51.
P. F.
Bessarab
, “
Comment on ‘ Path to collapse for an isolated N éel skyrmion
,’”
Phys. Rev. B
95
,
136401
(
2017
).
52.
D.
Li
,
S.
Haldar
, and
S.
Heinze
, “
Strain-driven zero-field near-10 nm skyrmions in two-dimensional van der Waals heterostructures
,”
Nano Lett.
22
,
7706
7713
(
2022
).
53.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
54.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
55.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
56.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
14269
(
1994
).
57.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
58.
V. V.
Kulish
and
W.
Huang
, “
Single-layer metal halides MX 2 ( X  =  Cl , Br , I ): Stability and tunable magnetism from first principles and MonteCarlo simulations
,”
J. Mater. Chem. C
5
,
8734
8741
(
2017
).
59.
L.
Wang
,
T.
Maxisch
, and
G.
Ceder
, “
Oxidation energies of transition metal oxides within the GGA + U framework
,”
Phys. Rev. B
73
,
195107
(
2006
).
60.
A. S.
Botana
and
M. R.
Norman
, “
Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer
,”
Phys. Rev. Mater.
3
,
044001
(
2019
).
61.
Y.
Yekta
,
H.
Hadipour
,
E.
Şaşıoğlu
,
C.
Friedrich
,
S. A.
Jafari
,
S.
Blügel
, and
I.
Mertig
, “
Strength of effective coulomb interaction in two-dimensional transition-metal halides M X 2 and M X 3 ( M = Ti , V , Cr , Mn , Fe , Co , Ni ; X = Cl , Br , I )
,”
Phys. Rev. Mater.
5
,
034001
(
2021
).
62.
C. D.
Batista
,
S. Z.
Lin
,
S.
Hayami
, and
Y.
Kamiya
, “
Frustration and chiral orderings in correlated electron systems
,”
Rep. Prog. Phys.
79
,
084504
(
2016
).
63.
S.
Hayami
,
S.-Z.
Lin
, and
C. D.
Batista
, “
Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy
,”
Phys. Rev. B
93
,
184413
(
2016
).
64.
S.
Hayami
, “
In-plane magnetic field-induced skyrmion crystal in frustrated magnets with easy-plane anisotropy
,”
Phys. Rev. B
103
,
224418
(
2021
).
65.
Y. A.
Kharkov
,
O. P.
Sushkov
, and
M.
Mostovoy
, “
Bound states of skyrmions and merons near the Lifshitz point
,”
Phys. Rev. Lett.
119
,
207201
(
2017
).
66.
Y.
Wang
,
S.
Dong
, and
X.
Yao
, “
Frustration-induced magnetic bimerons in transition metal halide CoX 2 ( X  =  Cl , Br ) monolayers
,”
Physica E
153
,
115776
(
2023
).
67.
H.
Liu
,
A.
Wang
,
P.
Zhang
,
C.
Ma
,
C.
Chen
,
Z.
Liu
,
Y.-Q.
Zhang
,
B.
Feng
,
P.
Cheng
,
J.
Zhao
,
L.
Chen
, and
K.
Wu
, “
Atomic-scale manipulation of single-polaron in a two-dimensional semiconductor
,”
Nat. Commun.
14
,
3690
(
2023
).
You do not currently have access to this content.