The basic unit of information in conductive bridge random access memory based on the redox mechanism of metal ions is physically stored in a conductive filament (CF). Therefore, the overall performance of the device is indissolubly related to the properties of such CFs, as unreliable performance often originates from unstable CFs behavior. However, accurately controlling the dissolution of CFs during device operation can be challenging due to their non-uniformity. This paper proposes a type of memristor based on a solid polymer electrolyte with a polyvinylpyrrolidone/polyvinyl alcohol composite layer structure. The properties of the composite layer are employed to regulate the number of CFs and the growth/fracture location, while the damage to the device by Joule heat is prevented. The device exhibits low operating voltage (0.5 V), stable switching conditions (2000 cycles), and a long holdup time (>3 × 104 s).

1.
D.
Yang
,
H.
Yang
,
X.
Guo
,
H.
Zhang
,
C.
Jiao
,
W.
Xiao
,
P.
Guo
,
Q.
Wang
, and
D.
He
,
Adv. Funct. Mater.
30
(
50
) (
2020
).
2.
X.
Guo
,
Q.
Wang
,
X.
Lv
,
H.
Yang
,
K.
Sun
,
D.
Yang
,
H.
Zhang
,
T.
Hasegawa
, and
D.
He
,
Nanoscale
12
(
7
),
4320
4327
(
2020
).
3.
Z.
Wang
,
W.
Xiao
,
H.
Yang
,
S.
Zhang
,
Y.
Zhang
,
K.
Sun
,
T.
Wang
,
Y.
Fu
,
Q.
Wang
,
J.
Zhang
,
T.
Hasegawa
, and
D.
He
,
ACS Appl. Mater Interfaces
14
(
1
),
1557
1567
(
2022
).
4.
G.
Bersuker
,
D. C.
Gilmer
,
D.
Veksler
,
P.
Kirsch
,
L.
Vandelli
,
A.
Padovani
,
L.
Larcher
,
K.
McKenna
,
A.
Shluger
,
V.
Iglesias
,
M.
Porti
, and
M.
Nafría
,
J. Appl. Phys.
110
(
12
),
124518
(
2011
).
5.
W.
Wang
,
L.
Danial
,
Y.
Li
,
E.
Herbelin
,
E.
Pikhay
,
Y.
Roizin
,
B.
Hoffer
,
Z.
Wang
, and
S.
Kvatinsky
,
Nat. Electron.
5
(
12
),
870
880
(
2022
).
6.
L.
Sun
,
Y.
Zhang
,
G.
Hwang
,
J.
Jiang
,
D.
Kim
,
Y. A.
Eshete
,
R.
Zhao
, and
H.
Yang
,
Nano Lett.
18
(
5
),
3229
3234
(
2018
).
7.
R.
Su
,
M.
Cheng
,
A.
Dong
,
Y.
Zhao
,
W.
Cheng
,
R.
Yang
,
J.
Yan
, and
X.
Miao
,
Appl. Phys. Lett.
121
(
20
),
203503
(
2022
).
8.
P.
Li
,
Z.
Wang
,
S.
Xing
,
Z.
Wang
,
W.
Xia
,
X.
Fan
,
D.
Gao
, and
Y.
Zhang
,
Appl. Phys. Lett.
124
(
10
),
103502
(
2024
).
9.
G.
Hu
,
Z.
Yu
,
H.
Qu
,
Y.
Yuan
,
D.
Li
,
M.
Zhu
,
J.
Guo
,
C.
Xia
,
X.
Wang
,
B.
Wang
,
G.
Ma
,
H.
Wang
, and
W.
Dong
,
Appl. Phys. Lett.
124
(
14
),
142109
(
2024
).
10.
U.
Celano
,
L.
Goux
,
A.
Belmonte
,
K.
Opsomer
,
A.
Franquet
,
A.
Schulze
,
C.
Detavernier
,
O.
Richard
,
H.
Bender
,
M.
Jurczak
, and
W.
Vandervorst
,
Nano Lett.
14
(
5
),
2401
2406
(
2014
).
11.
X.
Zhu
,
W.
Su
,
Y.
Liu
,
B.
Hu
,
L.
Pan
,
W.
Lu
,
J.
Zhang
, and
R. W.
Li
,
Adv. Mater.
24
(
29
),
3941
3946
(
2012
).
12.
N.
He
,
J.
Yan
,
Z.
Zhang
,
F.
Ye
,
H.
Qin
,
E.
Hu
,
X.
Wang
,
P.
Chen
,
Y.
Sheng
,
Y.
Tong
,
L.
Zhang
, and
F.
Xu
,
Appl. Phys. Lett.
123
(
21
),
212101
(
2023
).
13.
Y.
Niu
,
X.
Yu
,
X.
Dong
,
D.
Zheng
,
S.
Liu
,
Z.
Gan
,
K.
Chang
,
B.
Liu
,
K.
Jiang
,
Y.
Li
, and
H.
Wang
,
Appl. Phys. Lett.
120
(
2
),
022106
(
2022
).
14.
I.
Valov
and
W. D.
Lu
,
Nanoscale
8
(
29
),
13828
13837
(
2016
).
15.
K.
Krishnan
,
M.
Aono
, and
T.
Tsuruoka
,
Nanoscale
8
(
29
),
13976
13984
(
2016
).
16.
I.
Valov
,
ChemElectroChem
1
(
1
),
26
36
(
2013
).
17.
T.
Kim
,
T.
Vogel
,
E.
Piros
,
D.
Nasiou
,
N.
Kaiser
,
P.
Schreyer
,
R.
Winkler
,
A.
Zintler
,
A.
Arzumanov
,
S.
Petzold
,
L.
Molina-Luna
, and
L.
Alff
,
Appl. Phys. Lett.
122
(
2
),
023502
(
2023
).
18.
J.
Zhou
,
Z.
Wang
,
Y.
Fu
,
Z.
Xie
,
W.
Xiao
,
Z.
Wen
,
Q.
Wang
,
Q.
Liu
,
J.
Zhang
, and
D.
He
,
Nanoscale
15
(
32
),
13411
13419
(
2023
).
19.
M.
Li
,
H.
An
,
Y.
Kim
,
J. S.
An
,
M.
Li
, and
T. W.
Kim
,
ACS Appl. Mater. Interfaces
14
(
39
),
44724
44734
(
2022
).
20.
I.
Varun
,
D.
Bharti
,
A. K.
Mahato
,
V.
Raghuwanshi
, and
S. P.
Tiwari
,
IEEE Trans. Electron Devices
67
(
3
),
949
954
(
2020
).
21.
M.
Li
,
M.
Li
,
H.
An
,
J. S.
An
,
P.
Gu
,
D. H.
Kim
,
K. K.
Park
, and
T. W.
Kim
,
ACS Appl. Mater. Interfaces
16
(
3
),
3621
3630
(
2024
).
22.
H.
Yang
,
Z.
Wang
,
X.
Guo
,
H.
Su
,
K.
Sun
,
D.
Yang
,
W.
Xiao
,
Q.
Wang
, and
D.
He
,
ACS Appl. Mater. Interfaces.
12
(
30
),
34370
34377
(
2020
).
23.
W. J.
Ma
,
S. P.
Lin
,
J. M.
Luo
,
X. Y.
Zhang
,
Y.
Wang
,
Z. X.
Li
,
B.
Wang
, and
Y.
Zheng
,
Appl. Phys. Lett.
103
(
26
),
262903
(
2013
).
24.
Y. M.
Sun
,
C.
Song
,
J.
Yin
,
L. L.
Qiao
,
R.
Wang
,
Z. Y.
Wang
,
X. Z.
Chen
,
S. Q.
Yin
,
M. S.
Saleem
,
H. Q.
Wu
,
F.
Zeng
, and
F.
Pan
,
Appl. Phys. Lett.
114
(
19
),
193502
(
2019
).
25.
M.
Aslam
,
M. A.
Kalyar
, and
Z. A.
Raza
,
Polym. Eng. Sci.
58
(
12
),
2119
2132
(
2018
).
26.
Y.
Yang
,
P.
Gao
,
S.
Gaba
,
T.
Chang
,
X.
Pan
, and
W.
Lu
,
Nat. Commun.
3
(
1
),
732
(
2012
).
27.
Y.
Yang
,
P.
Gao
,
L.
Li
,
X.
Pan
,
S.
Tappertzhofen
,
S.
Choi
,
R.
Waser
,
I.
Valov
, and
W. D.
Lu
,
Nat. Commun.
5
(
1
),
4232
(
2014
).
28.
W.
Chen
,
S.
Tappertzhofen
,
H. J.
Barnaby
, and
M. N.
Kozicki
,
J. Electroceram.
39
(
1
),
109
131
(
2017
).
29.
Y.
Sun
,
C.
Song
,
J.
Yin
,
X.
Chen
,
Q.
Wan
,
F.
Zeng
, and
F.
Pan
,
ACS Appl. Mater. Interfaces
9
(
39
),
34064
34070
(
2017
).
30.
A. J.
Yang
,
S.-X.
Wang
,
J.
Xu
,
X. J.
Loh
,
Q.
Zhu
, and
X. R.
Wang
,
ACS Nano
17
(
11
),
9748
9762
(
2023
).
31.
K. Y.
Shin
,
Y.
Kim
,
F. V.
Antolinez
,
J. S.
Ha
,
S. S.
Lee
, and
J. H.
Park
,
Adv. Electron. Mater.
2
(
10
) (
2016
).
You do not currently have access to this content.