We used an optomechanical sensor to study the ultrasound generated by manually operated piezoelectric spark igniters. These low-energy sparks produce short-duration acoustic shock-wave pulses, with sub-microsecond rise times and frequency content extending well beyond 2 MHz in air. The same source–receiver combination was then used to demonstrate broadband characterization of solid (polymer and glass) plates in a simple setup, where single spark events yielded high signal-to-noise ratio data without the need for critical alignment. This setup also enabled us to estimate pressure excursions approaching 105 Pa at millimeter-scale distances from the spark. The results are in large part made possible by the small size, wide bandwidth, and high sensitivity of the optomechanical sensor and might be of interest for air-coupled ultrasound applications in nondestructive testing.

1.
E.
Blomme
,
D.
Bulcaen
, and
F.
Declercq
, “
Air-coupled ultrasonic NDE: Experiments in the frequency range 750kHz–2MHz
,”
NDT E Int.
35
(
7
),
417
426
(
2002
).
2.
D. E.
Chimenti
, “
Review of air-coupled ultrasonic materials characterization
,”
Ultrasonics
54
(
7
),
1804
1816
(
2014
).
3.
W.
Essig
,
Y.
Bernhardt
,
D.
Döring
,
I.
Solodov
,
T.
Gautzsch
,
M.
Gaal
,
D.
Hufschläger
,
R.
Sommerhuber
,
M.
Brauns
,
T.
Marhenke
,
J.
Hasener
,
A.
Szewieczek
, and
W.
Hillger
, “
Air-coupled ultrasound—Emerging NDT method
,”
ZfP-Zeitung
173
,
32
43
(
2021
).
4.
D. A.
Hutchins
,
W. M. D.
Wright
, and
D. W.
Schindel
, “
Ultrasonic measurements in polymeric materials using air‐coupled capacitance transducers
,”
J. Acoust. Soc. Am.
96
(
3
),
1634
1642
(
1994
).
5.
D. W.
Schindel
and
D. A.
Hutchins
, “
Through-thickness characterization of solids by wideband air-coupled ultrasound
,”
Ultrasonics
33
(
1
),
11
17
(
1995
).
6.
I.
Ladabaum
,
X.
Jin
,
H. T.
Soh
,
A.
Atalar
, and
B. T.
Khuri-Yakub
, “
Surface micromachined capacitive ultrasonic transducers
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
45
(
3
),
678
690
(
1998
).
7.
W. M. D.
Wright
and
D. A.
Hutchins
, “
Air-coupled ultrasonic testing of metals using broadband pulses in through-transmission
,”
Ultrasonics
37
(
1
),
19
22
(
1999
).
8.
G.
Waag
,
L.
Hoff
, and
P.
Norli
, “
Air-coupled ultrasonic through-transmission thickness measurements of steel plates
,”
Ultrasonics
56
,
332
339
(
2015
).
9.
J.
Rus
and
C. U.
Grosse
, “
Thickness measurement via local ultrasonic resonance spectroscopy
,”
Ultrasonics
109
,
106261
(
2021
).
10.
K.
Bente
,
J.
Rus
,
H.
Mooshofer
,
M.
Gaal
, and
C. U.
Grosse
, “
Broadband air-coupled ultrasound emitter and receiver enable simultaneous measurement of thickness and speed of sound in solids
,”
Sensors
23
(
3
),
1379
(
2023
).
11.
S.
Takahashi
, “
Properties and characteristics of P(VDF/TrFE) transducers manufactured by a solution casting method for use in the MHz-range ultrasound in air
,”
Ultrasonics
52
(
3
),
422
426
(
2012
).
12.
R. T.
Harrold
, in
IEEE International Conference on Electrical Insulation
(
IEEE
,
1980
), pp.
184
189
.
13.
W. M.
Wright
, “
Propagation in air of N waves produced by sparks
,”
J. Acoust. Soc. Am.
73
(
6
),
1948
1955
(
1983
).
14.
P.
Yuldashev
,
S.
Ollivier
,
M.
Averiyanov
,
O.
Sapozhnikov
,
V.
Khokhlova
, and
P.
Blanc-Benon
, “
Nonlinear propagation of spark-generated N-waves in air: Modeling and measurements using acoustical and optical methods
,”
J. Acoust. Soc. Am.
128
(
6
),
3321
3333
(
2010
).
15.
Q.
Liu
and
Y.
Zhang
, “
Shock wave generated by high-energy electric spark discharge
,”
J. Appl. Phys.
116
(
15
),
153302
(
2014
).
16.
M. M.
Karzova
,
P. V.
Yuldashev
,
V. A.
Khokhlova
,
S.
Ollivier
,
E.
Salze
, and
P.
Blanc-Benon
, “
Characterization of spark-generated N-waves in air using an optical schlieren method
,”
J. Acoust. Soc. Am.
137
(
6
),
3244
3252
(
2015
).
17.
P.
Yuldashev
,
M.
Karzova
,
V.
Khokhlova
,
S.
Ollivier
, and
P.
Blanc-Benon
, “
Mach-Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration of microphones
,”
J. Acoust. Soc. Am.
137
(
6
),
3314
3324
(
2015
).
18.
X.
Dai
,
J.
Zhu
, and
M. R.
Haberman
, “
A focused electric spark source for non-contact stress wave excitation in solids
,”
J. Acoust. Soc. Am.
134
(
6
),
EL513
(
2013
).
19.
J. A.
Cooper
,
R. J.
Dewhurst
,
S.
Moody
, and
S. B.
Palmer
, “
High-voltage spark discharge source as an ultrasonic generator
,”
IEE Proc., Part A: Phys. Sci., Meas. Instrum., Manage. Educ.
131
(
4
),
275
281
(
1984
).
20.
C.
Ayrault
,
P.
Béquin
, and
S.
Baudin
, in
Acoustics 2012
, edited by
S. F.
d'Acoustique
(
Nantes
,
France
,
2012
).
21.
O. K.
Jaenicke
,
F. G.
Hita Martínez
,
J.
Yang
,
S.
Im
, and
D. B.
Go
, “
Hand-generated piezoelectric mechanical-to-electrical energy conversion plasma
,”
Appl. Phys. Lett.
117
(
9
),
093901
(
2020
).
22.
G. J.
Hornig
,
K. G.
Scheuer
,
E. B.
Dew
,
R.
Zemp
, and
R. G.
DeCorby
, “
Ultrasound sensing at thermomechanical limits with optomechanical buckled-dome microcavities
,”
Opt. Express
30
(
18
),
33083
(
2022
).
23.
K. G.
Scheuer
and
R. G.
DeCorby
, “
All-optical, air-coupled ultrasonic detection of low-pressure gas leaks and observation of jet tones in the MHz range
,”
Sensors
23
(
12
),
5665
(
2023
).
24.
K. G.
Scheuer
,
F. B.
Romero
,
G. J.
Hornig
, and
R. G.
DeCorby
, “
Ultrasonic spectroscopy of sessile droplets coupled to optomechanical sensors
,”
Lab Chip
23
,
5131
5138
(
2023
).
25.
K. G.
Scheuer
,
F. B.
Romero
, and
R. G.
DeCorby
, “Coupling the thermal acoustic modes of a bubble to an optomechanical sensor,” arXiv:2308.01989.
26.
S.
Dixon
,
C.
Edwards
,
S. B.
Palmer
, and
J.
Reed
, “
Ultrasonic generation using a plasma igniter
,”
J. Phys. D: Appl. Phys.
34
(
7
),
1075
(
2001
).
You do not currently have access to this content.