The anisotropic optical absorption edge of β-Ga2O3 follows a modified Beer–Lambert law having two effective absorption coefficients. The absorption coefficient of linearly polarized light reduces to the least absorbing direction beyond a critical penetration depth, which itself depends on polarization and wavelength. To understand this behavior, a Stokes vector analysis is performed to track the polarization state as a function of depth. The weakening of the absorption coefficient is associated with a gradual shift of linear polarization to the least absorbing crystallographic direction in the plane, which is along the a-exciton within the (010) plane or along the b-exciton in the (001) plane. We show that strong linear dichroism near the optical absorption edge causes this shift in β-Ga2O3, which arises from the anisotropy and spectral splitting of the physical absorbers, i.e., excitons. The linear polarization shift is accompanied by a variation in the ellipticity due to the birefringence of β-Ga2O3. Analysis of the phase relationship between the incoming electric field to that at a certain depth reveals the phase speed as an effective refractive index, which varies along different crystallographic directions. The critical penetration depth is shown to be correlated with the depth at which the ellipticity is maximal. Thus, the anisotropic Beer–Lambert law arises from the interplay of both the dichroic and birefringent properties of β-Ga2O3.

1.
T. G.
Mayerhöfer
,
S.
Pahlow
, and
J.
Popp
, “
The Bouguer-Beer-Lambert Law: Shining Light on the Obscure
,”
ChemPhysChem.
21
,
2029
2046
(
2020
).
2.
M. M. R.
Adnan
,
D.
Verma
,
C.
Sturm
,
M.
Schubert
, and
R. C.
Myers
, “
Anisotropic Beer–Lambert law in β-Ga2O3: Polarization dependent absorption and photoresponsivity spectra
,”
Phys. Rev. Appl.
21
,
054059
(
2024
).
3.
S.
Chandrasekhar
, “
The transfer of radiation in stellar atmospheres
,”
Bull. Am. Math. Soc.
53
,
641
(
1947
).
4.
F.
Perrin
, “
Polarization of light scattered by isotropic opalescent media
,”
J. Chem. Phys.
10
,
415
(
1942
).
5.
W. H.
McMAster
, “
Polarization and the stokes parameters
,”
Am. J. Phys.
22
,
351
(
1954
).
6.
W. H.
McMaster
, “
Matrix representation of polarization
,”
Rev. Mod. Phys.
33
,
8
(
1961
).
7.
A.
Mock
,
R.
Korlacki
,
C.
Briley
,
V.
Darakchieva
,
B.
Monemar
,
Y.
Kumagai
,
K.
Goto
,
M.
Higashiwaki
, and
M.
Schubert
, “
Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3
,”
Phys. Rev. B
96
,
245205
(
2017
).
8.
C.
Sturm
,
J.
Furthmüller
,
F.
Bechstedt
,
R.
Schmidt-Grund
, and
M.
Grundmann
, “
Dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 0.5–8.5 EV
,”
APL Mater.
3
,
106106
(
2015
).
9.
D.
Verma
,
M. M. R.
Adnan
,
S.
Dhara
,
C.
Sturm
,
S.
Rajan
, and
R. C.
Myers
, “
Anisotropic excitonic photocurrent in β-Ga2O3
,”
Phys. Rev. Mater.
7
,
L061601
(
2023
).
10.
M. M. R.
Adnan
,
D.
Verma
,
Z.
Xia
,
N. K.
Kalarickal
,
S.
Rajan
, and
R. C.
Myers
, “
Spectral measurement of the breakdown limit of β-Ga2O3 and tunnel ionization of self-trapped excitons and holes
,”
Phys. Rev. Appl.
16
,
034011
(
2021
).
11.
A.
Rodger
, “
Circular dichroism and linear dichroism
,” in
Encyclopedia of Analytical Chemistry, Online © 2006–2013
(
John Wiley & Sons, Ltd
,
2014
), pp.
1
34
.
12.
P.
Gopalan
,
S.
Knight
,
A.
Chanana
,
M.
Stokey
,
P.
Ranga
,
M. A.
Scarpulla
,
S.
Krishnamoorthy
,
V.
Darakchieva
,
Z.
Galazka
,
K.
Irmscher
,
A.
Fiedler
,
S.
Blair
,
M.
Schubert
, and
B.
Sensale-Rodriguez
, “
The anisotropic quasi-static permittivity of single-crystal β-Ga2O3 measured by terahertz spectroscopy
,”
Appl. Phys. Lett.
117
,
252103
(
2020
).
13.
A.
Fiedler
,
R.
Schewski
,
Z.
Galazka
, and
K.
Irmscher
, “
Static dielectric constant of β-Ga2O3 perpendicular to the principal planes (100), (010), and (001)
,”
ECS J. Solid State Sci. Technol.
8
,
Q3083
(
2019
).
14.
E.
Hecht
,
Optics
(
Addison-Wesley
,
2002
).
15.
J.
Furthmüller
and
F.
Bechstedt
, “
Quasiparticle bands and spectra of Ga2O3 polymorphs
,”
Phys. Rev. B
93
,
115204
(
2016
).
16.
V. C.
Agulto
,
K.
Toya
,
T. N. K.
Phan
,
V. K.
Mag-usara
,
J.
Li
,
M. J. F.
Empizo
,
T.
Iwamoto
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
,
N.
Sarukura
,
M.
Yoshimura
, and
M.
Nakajima
, “
Anisotropic complex refractive index of β-Ga2O3 bulk and epilayer evaluated by terahertz time-domain spectroscopy
,”
Appl. Phys. Lett.
118
,
042102
(
2021
).
17.
D.
Carrasco
,
E.
Nieto-pinero
,
M.
Alonso-orts
,
J. M. S.
Juan
,
L. N. J.
Jesenovec
,
J. S.
Mccloy
,
E.
Nogales
, and
M.
Bianchi
, “
Temperature-dependent anisotropic refractive index in β-Ga2O3: Application in interferometric thermometers
,”
Nanomaterials
13
,
1126
(
2023
).
You do not currently have access to this content.