Nanothermometry is crucial for understanding physical, chemical, and biological systems, which require precise temperature measurement. Fluorescent nanodiamonds containing nitrogen-vacancy (NV) color centers offer an approach to temperature sensing. In this study, we present the spectrofluorometric characteristics of the NV zero-phonon lines (575 and 637 nm), in 100 nm nanodiamonds in aqueous volume ensembles at a concentration of 0.5 mg/ml, across the temperature range of 30–45 °C. The NV0 and NV fluorescence intensities achieved high linear correlation values of 0.99 (INV0) and 0.94 (INV), respectively, demonstrating their efficiency in high precision temperature assessment. Additionally, we explore NV0 width as temperature increases, NV populations intensity ratios, and INV0/INV ratios to gain insights into thermal quenching phenomena in fluorescent nanodiamonds, where upon heating, an increasing trend for INV/(INV0+INV) is observed, while an antisymmetric effect takes place for INV0/(INV0+INV). These findings indicate the potential of commercial nanodiamonds for precise all-optical fluorescence-based temperature sensing.

1.
C. D. S.
Brites
,
P. P.
Lima
,
N. J. O.
Silva
et al, “
Thermometry at the nanoscale
,”
Nanoscale
4
,
4799
(
2012
).
2.
E.
Ezerskyte
,
A.
Morkvenas
,
J.
Venius
et al, “
Biocompatible upconverting nanoprobes for dual-modal imaging and temperature sensing
,”
ACS Appl. Nano Mater.
7
,
6185
6195
(
2024
).
3.
S. D.
Subedi
,
V. V.
Fedorov
,
J.
Peppers
et al, “
Laser spectroscopic characterization of negatively charged nitrogen-vacancy (NV) centers in diamond
,”
Opt. Mater. Express
9
,
2076
2087
(
2019
).
4.
M. H.
Alkahtani
,
F.
Alghannam
,
L.
Jiang
et al, “
Fluorescent nanodiamonds: Past, present, and future
,”
Nanophotonics
7
,
1423
1453
(
2018
).
5.
M.
Keremidarska
,
A.
Ganeva
,
D.
Mitev
et al, “
Comparative study of cytotoxicity of detonation nanodiamond particles with an osteosarcoma cell line and primary mesenchymal stem cells
,”
Biotechnol. Biotechnol. Equip.
28
,
733
739
(
2014
).
6.
U. T.
Uthappa
,
O. R.
Arvind
,
G.
Sriram
et al, “
Nanodiamonds and their surface modification strategies for drug delivery applications
,”
J. Drug Deliv. Sci. Technol.
60
,
101993
(
2020
).
7.
H.-S.
Jung
and
K. C.
Neuman
, “
Surface modification of fluorescent nanodiamonds for biological applications
,”
Nanomaterials
11
,
153
(
2021
).
8.
L.
Liang
,
P.
Zheng
,
S.
Jia
et al, “
Plasmonic nanodiamonds
,”
Nano Lett.
23
,
5746
5754
(
2023
).
9.
T.-N.
Le
,
Y.-T.
Chiang
,
Y.
Hui
et al, “
In vitro bioimaging of fluorescent nanodiamonds
,” in
Nanodiamonds in Analytical and Biological Sciences
(
John Wiley & Sons, Ltd
,
2023
), pp.
95
127
.
10.
F.
Morales-Zavala
,
N.
Casanova-Morales
,
R. B.
Gonzalez
et al, “
Functionalization of stable fluorescent nanodiamonds towards reliable detection of biomarkers for Alzheimer's disease
,”
J. Nanobiotechnol.
16
,
60
(
2018
).
11.
S.
Claveau
,
J.-R.
Bertrand
, and
F.
Treussart
, “
Fluorescent nanodiamond applications for cellular process sensing and cell tracking
,”
Micromachines
9
,
247
(
2018
).
12.
G.
Kucsko
,
P. C.
Maurer
,
N. Y.
Yao
et al, “
Nanometre-scale thermometry in a living cell
,”
Nature
500
,
54
58
(
2013
).
13.
F.
Pedroza-Montero
,
K.
Santacruz-Gómez
,
M.
Acosta-Elías
et al, “
Thermometric characterization of fluorescent nanodiamonds suitable for biomedical applications
,”
Appl. Sci.
11
,
4065
(
2021
).
14.
T.
Wu
,
X.
Chen
,
Z.
Gong
et al, “
Intracellular thermal probing using aggregated fluorescent nanodiamonds
,”
Adv. Sci.
9
,
2103354
(
2022
).
15.
C. D. S.
Brites
,
R.
Marin
,
M.
Suta
et al, “
Spotlight on luminescence thermometry: Basics, challenges, and cutting-edge applications
,”
Adv. Mater.
35
,
2302749
(
2023
).
16.
J.
Zhou
,
B.
del Rosal
,
D.
Jaque
et al, “
Advances and challenges for fluorescence nanothermometry
,”
Nat. Methods
17
,
967
980
(
2020
).
17.
W.
Long
,
H.
Ouyang
,
W.
Wan
et al, “
‘Two in one’: Simultaneous functionalization and DOX loading for fabrication of nanodiamond-based pH responsive drug delivery system
,”
Mater. Sci. Eng. C
108
,
110413
(
2020
).
18.
S.
Chauhan
,
N.
Jain
, and
U.
Nagaich
, “
Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents
,”
J. Pharm. Anal.
10
,
1
12
(
2020
).
19.
L.-J.
Su
,
M.-S.
Wu
,
Y. Y.
Hui
et al, “
Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs
,”
Sci. Rep.
7
,
45607
(
2017
).
20.
P. C.
Maurer
,
G.
Kucsko
,
C.
Latta
et al, “
Room-temperature quantum bit memory exceeding one second
,”
Science
336
,
1283
1286
(
2012
).
21.
P.
Andrich
,
C. F.
de las Casas
,
X.
Liu
et al, “
Long-range spin wave mediated control of defect qubits in nanodiamonds
,”
npj Quantum Inf.
3
,
28
(
2017
).
22.
S. V.
Bolshedvorskii
,
A. I.
Zeleneev
,
V. V.
Vorobyov
et al, “
Single silicon vacancy centers in 10 nm diamonds for quantum information applications
,”
ACS Appl. Nano Mater.
2
,
4765
4772
(
2019
).
23.
L.
Golubewa
,
Y.
Padrez
,
S.
Malykhin
et al, “
All‐optical thermometry with NV and SiV color centers in biocompatible diamond microneedles
,”
Adv. Opt. Mater.
10
,
2200631
(
2022
).
24.
M.
Fujiwara
,
G.
Uchida
,
I.
Ohki
et al, “
All-optical nanoscale thermometry based on silicon-vacancy centers in detonation nanodiamonds
,”
Carbon
198
,
57
62
(
2022
).
25.
D.
Jaque
,
B. D.
Rosal
,
E. M.
Rodríguez
et al, “
Fluorescent nanothermometers for intracellular thermal sensing
,”
Nanomedicine
9
,
1047
1062
(
2014
).
26.
T.
Plakhotnik
,
H.
Aman
, and
H.-C.
Chang
, “
All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz−1/2
,”
Nanotechnology
26
,
245501
(
2015
).
27.
T.
Plakhotnik
and
D.
Gruber
, “
Luminescence of nitrogen-vacancy centers in nanodiamonds at temperatures between 300 and 700 K: Perspectives on nanothermometry
,”
Phys. Chem. Chem. Phys.
12
,
9751
(
2010
).
28.
C. T.
Nguyen
,
R. E.
Evans
,
A.
Sipahigil
et al, “
All-optical nanoscale thermometry with silicon-vacancy centers in diamond
,”
Appl. Phys. Lett.
112
,
203102
(
2018
).
29.
M. A.
Zurbuchen
,
M. P.
Lake
,
S. A.
Kohan
et al, “
Nanodiamond landmarks for subcellular multimodal optical and electron imaging
,”
Sci. Rep.
3
,
2668
(
2013
).
30.
D. K.
Bommidi
and
A. D.
Pickel
, “
Temperature-dependent excited state lifetimes of nitrogen vacancy centers in individual nanodiamonds
,”
Appl. Phys. Lett.
119
,
254103
(
2021
).
31.
Y.
Chen
,
C.
Li
,
T.
Yang
et al, “
Real-time ratiometric optical nanoscale thermometry
,”
ACS Nano
17
,
2725
2736
(
2023
).
32.
M.
Quintanilla
,
A.
Benayas
,
R.
Naccache
et al, “
Luminescent nanothermometry with lanthanide-doped nanoparticles
,” in
Thermometry at the Nanoscale: Techniques and Selected Applications
, edited by
L. D.
Carlos
and
F.
Palacio
(
The Royal Society of Chemistry
,
2015
).
33.
M.
Pedroni
,
P.
Cortelletti
,
I. X.
Cantarelli
et al, “
Colloidal nanothermometers based on neodymium doped alkaline-earth fluorides in the first and second biological windows
,”
Sens. Actuators B: Chem.
250
,
147
155
(
2017
).
34.
A.
Benayas
,
B.
del Rosal
,
A.
Pérez-Delgado
et al, “
Nd:YAG near-infrared luminescent nanothermometers
,”
Adv. Opt. Mater.
3
,
687
694
(
2015
).
35.
M.
Tan
,
F.
Li
,
N.
Cao
et al, “
Accurate in vivo nanothermometry through NIR-II lanthanide luminescence lifetime
,”
Small
16
,
2004118
(
2020
).
36.
M.
Quintanilla
,
M.
Henriksen-Lacey
,
C.
Renero-Lecuna
et al, “
Challenges for optical nanothermometry in biological environments
,”
Chem. Soc. Rev.
51
,
4223
4242
(
2022
).
37.
F. M.
Winnik
and
D.
Maysinger
, “
Quantum dot cytotoxicity and ways to reduce it
,”
Acc. Chem. Res.
46
,
672
680
(
2013
).
38.
K.
Okabe
,
N.
Inada
,
C.
Gota
et al, “
Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy
,”
Nat. Commun.
3
,
705
(
2012
).
39.
L. J.
Mohammed
and
K. M.
Omer
, “
Carbon dots as new generation materials for nanothermometer: Review
,”
Nanoscale Res. Lett.
15
,
182
(
2020
).
40.
M. K.
Kumawat
,
M.
Thakur
,
R. B.
Gurung
et al, “
Graphene quantum dots from Mangifera indica: Application in near-infrared bioimaging and intracellular nanothermometry
,”
ACS Sustainable Chem. Eng.
5
,
1382
1391
(
2017
).
41.
S.
Sotoma
,
C. P.
Epperla
, and
H.-C.
Chang
, “
Diamond nanothermometry
,”
ChemNanoMat
4
,
15
27
(
2018
).
42.
S.-J.
Yu
,
M.-W.
Kang
,
H.-C.
Chang
et al, “
Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity
,”
J. Am. Chem. Soc.
127
,
17604
17605
(
2005
).
43.
N. M.
Cordina
,
N.
Sayyadi
,
L. M.
Parker
et al, “
Reduced background autofluorescence for cell imaging using nanodiamonds and lanthanide chelates
,”
Sci. Rep.
8
,
4521
(
2018
).
44.
R.
Li
,
T. A.
Vedelaar
,
A.
Sigaeva
et al, “
Fluorescent nanodiamonds for tracking single polymer particles in cells and tissues
,”
Anal. Chem.
95
,
13046
13054
(
2023
).
45.
O.
Faklaris
,
V.
Joshi
,
T.
Irinopoulou
et al, “
Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake mechanism in mammalian cells
,”
ACS Nano
3
,
3955
3962
(
2009
).
46.
O.
Faklaris
,
D.
Garrot
,
V.
Joshi
et al, “
Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway
,”
Small
4
,
2236
2239
(
2008
).
47.
F. A.
Pedroza-Montero
,
J. N.
Pedroza-Montero
,
O.
Álvarez-Bajo
et al, “
Study of fluorescent nanodiamonds concentrations in aqueous solutions for biological applications
,”
Opt. Mater.
140
,
113872
(
2023
).
48.
F.
Gorrini
,
C.
Dorigoni
,
D.
Olivares-Postigo
et al, “
Long-lived ensembles of shallow NV– centers in flat and nanostructured diamonds by photoconversion
,”
ACS Appl. Mater. Interfaces
13
,
43221
43232
(
2021
).
49.
N.
Aslam
,
G.
Waldherr
,
P.
Neumann
et al, “
Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection
,”
New J. Phys.
15
,
013064
(
2013
).
50.
S.
Arai
,
Ferdinandus
,
S.
Takeoka
et al, “
Micro-thermography in millimeter-scale animals by using orally-dosed fluorescent nanoparticle thermosensors
,”
Analyst
140
,
7534
7539
(
2015
).
You do not currently have access to this content.