We observe concurrent precessional and partial orbital motion of highly birefringent liquid crystal (LC) particles trapped in a spherically aberrated optical trap, which is built employing a tilted refractive index stratified medium. For input circularly polarized light, the breaking of azimuthal symmetry induced by the tilt leads to an asymmetric intensity distribution in the radial direction near the trap focal plane, which—in combination with the spin–orbit conversion effects for input circularly polarized light—results in nonuniform canonical and spin momentum densities in those regions. In addition, while the canonical momentum remains always oriented toward the axial direction, the spin momentum reverses direction along spatial loops in the radial direction. As a consequence, the total momentum precesses around the canonical momentum vector along elliptical spatial loops—akin to a Larmor-like precession of magnetic moment (total momentum in our case) around a magnetic field (canonical momentum). We probe this precession experimentally using the single trapped LC particles—with the direction of precession and orbital motion determined by the helicity of the input light, with the precession frequency varying linearly with the laser power. Our experimental results are validated by numerical simulations of the system where we employ the Debye–Wolf theory for tight focusing in the presence of a tilted stratified media.

1.
J. H.
Poynting
and
J. W.
Strutt
, “
Xv. on the transfer of energy in the electromagnetic field
,”
Philos. Trans. R. Soc.
175
,
343
361
(
1884
).
2.
K. Y.
Bliokh
,
A. Y.
Bekshaev
, and
F.
Nori
, “
Extraordinary momentum and spin in evanescent waves
,”
Nat. Commun.
5
,
1
8
(
2014
).
3.
M. V.
Berry
, “
Optical currents
,”
J. Opt. A: Pure Appl. Opt.
11
,
094001
(
2009
).
4.
H. C.
Ohanian
, “
What is spin?
,”
Am. J. Phys.
54
,
500
505
(
1986
).
5.
G.
Nienhuis
and
L.
Allen
, “
Paraxial wave optics and harmonic oscillators
,”
Phys. Rev. A
48
,
656
665
(
1993
).
6.
A. T.
O'Neil
,
I.
MacVicar
,
L.
Allen
, and
M. J.
Padgett
, “
Intrinsic and extrinsic nature of the orbital angular momentum of a light beam
,”
Phys. Rev. Lett.
88
,
053601
(
2002
).
7.
L.
Allen
and
M.
Padgett
, “
The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density
,”
Opt. Commun.
184
,
67
71
(
2000
).
8.
K. Y.
Bliokh
,
F. J.
Rodríguez-Fortuño
,
F.
Nori
, and
A. V.
Zayats
, “
Spin–orbit interactions of light
,”
Nat. Photonics
9
,
796
808
(
2015
).
9.
K. Y.
Bliokh
,
D.
Smirnova
, and
F.
Nori
, “
Quantum spin Hall effect of light
,”
Science
348
,
1448
1451
(
2015
).
10.
I.
Fernandez-Corbaton
,
X.
Zambrana-Puyalto
, and
G.
Molina-Terriza
, “
Helicity and angular momentum: A symmetry-based framework for the study of light–matter interactions
,”
Phys. Rev. A
86
,
042103
(
2012
).
11.
E.
Brasselet
,
N.
Murazawa
,
H.
Misawa
, and
S.
Juodkazis
, “
Optical vortices from liquid crystal droplets
,”
Phys. Rev. Lett.
103
,
103903
(
2009
).
12.
E.
Brasselet
,
Y.
Izdebskaya
,
V.
Shvedov
,
A. S.
Desyatnikov
,
W.
Krolikowski
, and
Y. S.
Kivshar
, “
Dynamics of optical spin–orbit coupling in uniaxial crystals
,”
Opt. Lett.
34
,
1021
1023
(
2009
).
13.
H.
Larocque
,
J.
Gagnon-Bischoff
,
F.
Bouchard
,
R.
Fickler
,
J.
Upham
,
R. W.
Boyd
, and
E.
Karimi
, “
Arbitrary optical wavefront shaping via spin-to-orbit coupling
,”
J. Opt.
18
,
124002
(
2016
).
14.
K. Y.
Bliokh
and
A.
Aiello
, “
Goos–Hänchen and Imbert–Fedorov beam shifts: An overview
,”
J. Opt.
15
,
014001
(
2013
).
15.
K. Y.
Bliokh
,
E. A.
Ostrovskaya
,
M. A.
Alonso
,
O. G.
Rodríguez-Herrera
,
D.
Lara
, and
C.
Dainty
, “
Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems
,”
Opt. Express
19
,
26132
26149
(
2011
).
16.
Z.
Zhang
,
S.
Liang
,
F.
Li
,
S.
Ning
,
Y.
Li
,
G.
Malpuech
,
Y.
Zhang
,
M.
Xiao
, and
D.
Solnyshkov
, “
Spin–orbit coupling in photonic graphene
,”
Optica
7
,
455
462
(
2020
).
17.
S.
Tsesses
,
K.
Cohen
,
E.
Ostrovsky
,
B.
Gjonaj
, and
G.
Bartal
, “
Spin–orbit interaction of light in plasmonic lattices
,”
Nano Lett.
19
,
4010
4016
(
2019
).
18.
W.
Zhang
,
Y.
Wang
,
D.
Xu
, and
H.
Luo
, “
Spin–orbit interaction of light: When twisted light meets twisted metasurfaces
,”
Phys. Rev. A
107
,
043502
(
2023
).
19.
A.
Ciattoni
,
A.
Marini
, and
C.
Rizza
, “
Efficient vortex generation in subwavelength epsilon-near-zero slabs
,”
Phys. Rev. Lett.
118
,
104301
(
2017
).
20.
J. K.
Nayak
,
H.
Suchiang
,
S. K.
Ray
,
S.
Guchhait
,
A.
Banerjee
,
S. D.
Gupta
, and
N.
Ghosh
, “
Spin-direction-spin coupling of quasiguided modes in plasmonic crystals
,”
Phys. Rev. Lett.
131
,
193803
(
2023
).
21.
K. Y.
Bliokh
,
M. A.
Alonso
,
E. A.
Ostrovskaya
, and
A.
Aiello
, “
Angular momenta and spin–orbit interaction of nonparaxial light in free space
,”
Phys. Rev. A
82
,
063825
(
2010
).
22.
A.
Aiello
,
P.
Banzer
,
M.
Neugebauer
, and
G.
Leuchs
, “
From transverse angular momentum to photonic wheels
,”
Nat. Photonics
9
,
789
795
(
2015
).
23.
M.
Neugebauer
,
P.
Banzer
,
T.
Bauer
,
S.
Orlov
,
N.
Lindlein
,
A.
Aiello
, and
G.
Leuchs
, “
Geometric spin Hall effect of light in tightly focused polarization-tailored light beams
,”
Phys. Rev. A
89
,
013840
(
2014
).
24.
R. N.
Kumar
,
Yatish
,
S. D.
Gupta
,
N.
Ghosh
, and
A.
Banerjee
, “
Probing the rotational spin-Hall effect in a structured Gaussian beam
,”
Phys. Rev. A
105
,
023503
(
2022
).
25.
R. N.
Kumar
,
J. K.
Nayak
,
S. D.
Gupta
,
N.
Ghosh
, and
A.
Banerjee
, “
Probing dual asymmetric transverse spin angular momentum in tightly focused vector beams in optical tweezers
,”
Laser Photonics Rev.
18
(
2
),
2300189
(
2024
).
26.
A. K.
Singh
,
S.
Saha
,
S. D.
Gupta
, and
N.
Ghosh
, “
Transverse spin in the scattering of focused radially and azimuthally polarized vector beams
,”
Phys. Rev. A
97
,
043823
(
2018
).
27.
M.
Neugebauer
,
T.
Bauer
,
A.
Aiello
, and
P.
Banzer
, “
Measuring the transverse spin density of light
,”
Phys. Rev. Lett.
114
,
063901
(
2015
).
28.
S.
Roy
,
N.
Ghosh
,
A.
Banerjee
, and
S. D.
Gupta
, “
Manipulating the transverse spin angular momentum and belinfante momentum of spin-polarized light by a tilted stratified medium in optical tweezers
,”
Phys. Rev. A
105
,
063514
(
2022
).
29.
A. B.
Stilgoe
,
T. A.
Nieminen
, and
H.
Rubinsztein-Dunlop
, “
Controlled transfer of transverse orbital angular momentum to optically trapped birefringent microparticles
,”
Nat. Photonics
16
,
346
351
(
2022
).
30.
V.
Svak
,
O.
Brzobohatỳ
,
M.
Šiler
,
P.
Jákl
,
J.
Kaňka
,
P.
Zemánek
, and
S.
Simpson
, “
Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap
,”
Nat. Commun.
9
,
1
8
(
2018
).
31.
B.
Roy
,
N.
Ghosh
,
S.
Dutta Gupta
,
P. K.
Panigrahi
,
S.
Roy
, and
A.
Banerjee
, “
Controlled transportation of mesoscopic particles by enhanced spin–orbit interaction of light in an optical trap
,”
Phys. Rev. A
87
,
043823
(
2013
).
32.
A.
Haldar
,
S. B.
Pal
,
B.
Roy
,
S. D.
Gupta
, and
A.
Banerjee
, “
Self-assembly of microparticles in stable ring structures in an optical trap
,”
Phys. Rev. A
85
,
033832
(
2012
).
33.
D.
Pal
,
S. D.
Gupta
,
N.
Ghosh
, and
A.
Banerjee
, “
Direct observation of the effects of spin dependent momentum of light in optical tweezers
,”
APL Photonics
5
,
086106
(
2020
).
34.
C.
Yang
,
R.
Chen
,
L.
Feng
,
R.
Zhang
, and
D.
Chen
, “
Electro-optic response of bipolar nematic liquid crystal confined in oblate spheroid
,”
Front. Soft Matter
2
,
1022077
(
2022
).
35.
T. A.
Wood
,
H. F.
Gleeson
,
M. R.
Dickinson
, and
A. J.
Wright
, “
Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets
,”
Appl. Phys. Lett.
84
,
4292
4294
(
2004
).
36.
V.
Fréedericksz
and
V.
Zolina
, “
Forces causing the orientation of an anisotropic liquid
,”
Trans. Faraday Soc.
29
,
919
930
(
1933
).
37.
B.
Richards
and
E.
Wolf
, “
Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system
,”
Proc. R. Soc. London A
253
,
358
379
(
1959
).
38.
E.
Wolf
, “
Electromagnetic diffraction in optical systems—I. An integral representation of the image field
,”
Proc. R. Soc. London A
253
,
349
357
(
1959
).
39.
P.
Török
and
P.
Varga
, “
Electromagnetic diffraction of light focused through a stratified medium
,”
Appl. Opt.
36
,
2305
2312
(
1997
).
40.
P. R.
Munro
, “
Tool for simulating the focusing of arbitrary vector beams in free-space and stratified media
,”
J. Biomed. Opt.
23
,
1
10
(
2018
).
41.
S.
Saha
,
N.
Ghosh
, and
S.
Dutta Gupta
, “
Transverse spin and transverse momentum in structured optical fields
,” in
Encyclopedia of Applied Physics
(
John Wiley & Sons, Ltd
,
2019
), pp.
1
32
.
You do not currently have access to this content.