Transmission-mode (t-mode) GaAs negative electron affinity photocathodes (NEA-PCs) can be integrated with the optical focusing lenses and microchannel plates to produce high-quality electron beams and high-sensitive detectors. Quantum efficiency (QE) of ∼40% has been reported for the t-mode thick (>1000 nm) GaAs NEA-PCs. Nevertheless, practical applications of these devices have been seriously restricted by their long response time (tens of picoseconds). In this work, the all-dielectric meta-surfaces (ADMS) were designed as the light managers for the t-mode ultra-thin GaAs NEA-PCs. For the 500–850 nm waveband, high light absorption (>80%) can be obtained through coupling the electromagnetic dipole moments of ADMS into the leaky optical modes in 100 nm ultra-thin GaAs NEA-PC layer, which leads to enhanced QE higher than that of the thick ones, the response time less than 5 ps, and the mean transverse energy less than 60 meV, respectively. Given these properties, ADMS t-model ultra-thin NEA-PCs represent a promising photocathode to provide the high-brightness short-pulse spin-polarized electron beams and high-sensitive fast-response detectors for the electron accelerator and low-light-level photodetection applications, respectively.

1.
D.
Abbott
,
P.
Adderley
,
A.
Adeyemi
et al,
Phys. Rev. Lett.
116
,
214801
(
2016
).
2.
W.
Liu
,
Y.
Chen
,
W.
Lu
et al,
Appl. Phys. Lett.
109
,
252104
(
2016
).
3.
N. A.
Moody
,
K. L.
Jensen
,
A.
Shabaev
et al,
Phys. Rev. Appl.
10
,
047002
(
2018
).
4.
J. K.
Bae
,
M.
Andorf
,
A.
Bartnik
et al,
AIP Adv.
12
,
095017
(
2022
).
5.
S.
Karkare
,
L.
Boulet
,
L.
Cultrera
et al,
Phys. Rev. Lett.
112
,
097601
(
2014
).
6.
J.
Wehmeijer
and
B.
Geest
,
Nat. Photonics
4
,
152
(
2010
).
7.
L.
Conti
,
J.
Barnstedt
,
L.
Hanke
et al,
Astrophys. Space Sci.
363
,
63
(
2018
).
8.
M.
Kuwahara
,
S.
Kusunoki
,
X. G.
Jin
et al,
Appl. Phys. Lett.
101
,
033102
(
2012
).
9.
N.
Yamamoto
,
T.
Nakanishi
,
A.
Mano
et al,
J. Appl. Phys.
103
,
064905
(
2008
).
10.
H.
Lee
,
L.
Cultrera
, and
I.
Bazarov
,
Appl. Phys. Lett.
108
,
124105
(
2016
).
11.
M.
Errando
and
M.
Martínez
,
Nucl. Instrum. Methods Phys. Res., Sect. A
567
,
233
(
2006
).
12.
L.
Feng
,
F.
Shi
,
L.
Yin
et al,
Proc. SPIE
9284
,
9284Y
(
2014
).
13.
D.
Wu
,
M.
Li
,
X.
Yang
et al,
J. Phys.: Conf. Ser.
1067
,
032010
(
2018
).
14.
G.
Schirripa Spagnolo
,
L.
Cozzella
, and
F.
Leccese
,
Sensors
20
,
2261
(
2020
).
15.
S.
Li
,
Y.
Zhang
,
Z.
Wang
et al,
Opt. Express
31
,
26014
(
2023
).
16.
H.
Chen
,
T.
Lin
,
F.
Huang
et al,
Adv. Opt. Mater.
10
,
2200836
(
2022
).
17.
Y.
Yang
,
W.
Yang
, and
C.
Sun
,
Sol. Energy Mat. Sol. C.
132
,
410
(
2015
).
18.
C.
Feng
,
Y.
Zhang
,
Y.
Qian
et al,
Opt. Commun.
369
,
50
(
2016
).
19.
Y.
Zhang
,
B.
Chang
,
J.
Niu
et al,
Appl. Phys. Lett.
99
,
101104
(
2011
).
20.
Y.
Zhang
,
J.
Niu
,
J.
Zhao
et al,
J. Appl. Phys.
108
,
093108
(
2010
).
21.
R.
Zhou
,
H.
Jani
,
Y.
Zhang
et al,
J. Appl. Phys.
130
,
113101
(
2021
).
22.
Z.
Wang
,
Y.
Zhang
,
S.
Li
,
J.
Zhan
et al,
J. Mater. Res. Technol.
19
,
2008
(
2022
).
23.
J.
Biswas
,
L.
Cultrera
,
W.
Liu
et al,
AIP Adv.
13
,
085106
(
2023
).
24.
X.
Peng
,
M.
Poelker
,
M.
Stutzman
et al,
Opt. Express
28
,
860
(
2020
).
25.
X.
Peng
,
Z.
Wang
,
Y.
Liu
et al,
Phys. Rev. Appl.
12
,
064002
(
2019
).
26.
N.
Scahill
and
K.
Aulenbacher
,
J. Appl. Phys.
132
,
185702
(
2022
).
27.
I. V.
Bazarov
,
B. M.
Dunham
,
Y.
Li
et al,
J. Appl. Phys.
103
,
054901
(
2008
).
28.
K.
Aulenbacher
,
J.
Schuler
,
D. V.
Harrach
et al,
J. Appl. Phys.
92
,
7536
(
2002
).
29.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
M. L.
Brongersma
et al,
Science
354
,
aag2472
(
2016
).
30.
S.
Jahani
and
Z.
Jacob
,
Nat. Nanotechnol.
11
,
23
(
2016
).
31.
A.
Leitis
,
A.
Heßler
,
S.
Wahl
et al,
Adv. Funct. Mater.
30
,
1910259
(
2020
).
32.
A. M.
Shaltout
,
V. M.
Shalaev
, and
M. L.
Brongersma
,
Science
364
,
eaat3100
(
2019
).
33.
Z.
Zhou
,
M.
Ye
,
M.
Yu
et al,
ACS Nano
16
,
5994
(
2022
).
34.
J.
Schlipf
,
F.
Berkmann
,
Y.
Yamamoto
et al,
Appl. Phys. Lett.
122
,
121701
(
2023
).
35.
Y.
Wu
,
W.
Yang
,
Y.
Fan
et al,
Sci. Adv.
5
,
eaax0939
(
2019
).
36.
O.
Goldberg
,
R.
Gherabli
,
J.
Engelberg
et al,
Adv. Opt. Mater.
12
,
2301612
(
2024
).
37.
W.
Liu
and
E.
Wang
,
J. Appl. Phys.
126
,
075706
(
2019
).
38.
A. F.
Oskooi
,
D.
Roundy
,
M.
Ibanescu
et al,
Comput. Phys. Commun.
181
,
687
(
2010
).
39.
S.
Karkare
,
D.
Dimitrov
,
W.
Schaff
et al,
J. Appl. Phys.
113
,
104904
(
2013
).
40.
R.
Alaee
,
C.
Rockstuhl
, and
I.
Fernandez-Corbaton
,
Opt. Commun.
407
,
17
(
2018
).
41.
J.
Groep
and
A. P.
Center
,
Opt. Express
21
,
26285
(
2013
).
42.
S.
Karkare
,
L.
Cultrera
,
B.
Schaff
et al, “
Photoemission from III-V semiconductor cathodes
,” in
5th International Particle Accelerator Conference
(
IPAC
,
Dresden, Germany
,
2014
), pp.
736
738
.
You do not currently have access to this content.