Although substrateless micro-scale silicon waveguides are a useful and versatile platform for terahertz waves, the fact that modal fields occupy the volume of the core limits the potential to dynamically manipulate guided waves. To address this, we introduce an aperiodic lattice structure to enable the monolithic co-integration of a Vivaldi antenna-like mode converter with a substrateless silicon waveguide. This broadband transition is experimentally confirmed to exhibit ∼2.5 dB average loss for two couplers, from 220 GHz to 330 GHz, and enables a photoexcited variable attenuator as proof-of-concept demonstration. This is an important enabling step to incorporate general-purpose dynamic reconfigurability, sensing, and modulation functionality into terahertz-range silicon-based integrated circuits, which are currently limited to primarily all-passive structures.

1.
D.
Headland
,
M.
Fujita
,
G.
Carpintero
,
T.
Nagatsuma
, and
W.
Withayachumnankul
, “
Terahertz integration platforms using substrateless all-silicon microstructures
,”
APL Photonics
8
,
091101
(
2023
).
2.
R.
Soref
and
B.
Bennett
, “
Electrooptical effects in silicon
,”
IEEE J. Quantum Electron.
23
,
123
129
(
1987
).
3.
J.-L.
Coutaz
,
L.
Duvillaret
,
F.
Garet
,
A.
Chelnokov
,
S.
Rowson
, and
J.-M.
Lourtioz
, “
Photoinduced variation of dielectric constant of silicon in the far infrared: Applications to light-controllable photonic band-gap crystals in the terahertz frequency range
,” in
Terahertz and Gigahertz Photonics
(
SPIE
,
1999
), Vol.
3795
, pp.
457
467
.
4.
S.
Seliverstov
,
S.
Svyatodukh
, and
G.
Goltsman
, “
Thermal phase shift in THz silicon effective-medium waveguide
,”
Appl. Phys. Lett.
123
,
092202
(
2023
).
5.
D.
Chicherin
,
M.
Sterner
,
D.
Lioubtchenko
,
J.
Oberhammer
, and
A. V.
Räisänen
, “
Analog-type millimeter-wave phase shifters based on MEMS tunable high-impedance surface and dielectric rod waveguide
,”
Int. J. Microwave Wireless Technol.
3
,
533
538
(
2011
).
6.
S.
Rahiminejad
,
M.
Alonso-delPino
,
T. J.
Reck
,
A.
Peralta
,
R.
Lin
,
C.
Jung-Kubiak
, and
G.
Chattopadhyay
, “
A low-loss silicon MEMS phase shifter operating in the 550-GHz band
,”
IEEE Trans. Terahertz Sci. Technol.
11
,
477
485
(
2021
).
7.
A.
Kumar
,
D. C.
Gallego
,
M.
Ali
,
A.
Rivera-Lavado
,
D.
Headland
, and
G.
Carpintero
, “
Broadband 770° phase shifter for mm-waves using controllable delocalization of modal fields in a dielectric rod waveguide
,” in
IEEE MTT-SInternational Microwave Symposium
(
IEEE
,
2023
), pp.
732
735
.
8.
S.
Khanal
,
S.
Rahiminejad
,
C.
Lee
,
J.
Koi
,
R.
Lin
, and
G.
Chattopadhyay
, “
A waveguide-based variable attenuator for terahertz applications
,”
IEEE Trans. Terahertz Sci. Technol.
14
,
178
187
(
2024
).
9.
A.
Kumar
,
M.
Gupta
,
P.
Pitchappa
,
N.
Wang
,
P.
Szriftgiser
,
G.
Ducournau
, and
R.
Singh
, “
Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication
,”
Nat. Commun.
13
,
5404
(
2022
).
10.
P.
Dechwechprasit
,
R. T.
Ako
,
S.
Sriram
,
C.
Fumeaux
, and
W.
Withayachumnankul
, “
Terahertz disk resonator on a substrateless dielectric waveguide platform
,”
Opt. Lett.
48
,
4685
4688
(
2023
).
11.
P.
Dechwechprasit
,
H.
Lees
,
D.
Headland
,
C.
Fumeaux
, and
W.
Withayachumnankul
, “
1-to-N terahertz integrated switches enabling multi-beam antennas
,”
Optica
10
,
1551
1558
(
2023
).
12.
W.
Gao
,
X.
Yu
,
M.
Fujita
,
T.
Nagatsuma
,
C.
Fumeaux
, and
W.
Withayachumnankul
, “
Effective-medium-cladded dielectric waveguides for terahertz waves
,”
Opt. Express
27
,
38721
38734
(
2019
).
13.
W.
Gao
,
W. S.
Lee
,
X.
Yu
,
M.
Fujita
,
T.
Nagatsuma
,
C.
Fumeaux
, and
W.
Withayachumnankul
, “
Characteristics of effective-medium-clad dielectric waveguides
,”
IEEE Trans. Terahertz Sci. Technol.
11
,
28
41
(
2021
).
14.
T.
Haggren
,
H. H.
Tan
, and
C.
Jagadish
, “
III–V thin films for flexible, cost-effective, and emerging applications in optoelectronics and photonics
,”
Acc. Mater. Res.
4
,
1046
1056
(
2023
).
15.
M.
Taha
,
S.
Walia
,
T.
Ahmed
,
D.
Headland
,
W.
Withayachumnankul
,
S.
Sriram
, and
M.
Bhaskaran
, “
Insulator–metal transition in substrate-independent VO2 thin film for phase-change devices
,”
Sci. Rep.
7
,
17899
(
2017
).
16.
A.
Rivera-Lavado
,
M.
Ali
,
D.
Gallego-Cabo
,
L.-E.
García-Muñoz
,
D. V.
Lioubtchenko
, and
G.
Carpintero
, “
Contactless RF probe interconnect technology enabling broadband testing to the terahertz range
,”
IEEE Trans. Terahertz Sci. Technol.
13
,
34
43
(
2023
).
17.
S.
Iwamatsu
,
M.
Ali
,
J. L.
Fernández-Estévez
,
J.
Tebart
,
A.
Kumar
,
S.
Makhlouf
,
G.
Carpintero
, and
A.
Stöhr
, “
Ultra-wideband multi-octave planar interconnect for multi-band THz communications
,”
J. Infrared, Millimeter, Terahertz Waves
44
,
532
550
(
2023
).
18.
D.
Headland
,
D. C.
Gallego
, and
G.
Carpintero
, “
Two-conductor ports enabling broadband operation of substrateless microscale silicon waveguides
,”
IEEE Trans. Terahertz Sci. Technol.
14
,
543
547
(
2024
).
19.
X.
Yu
,
D.
Headland
,
Y.
Nishida
,
R. A. S. D.
Koala
,
J.
Kim
,
M.
Fujita
, and
T.
Nagatsuma
, “
Hybrid integration between resonant tunneling diodes and unclad microphotonic diplexer for dual-channel coherent terahertz receiver
,”
IEEE J. Sel. Top. Quantum Electron.
28
,
1
(
2022
).
20.
M.
Ali
,
D.
Headland
,
A.
Rivera-Lavado
,
O.
Cojocari
,
A.
Stöhr
, and
G.
Carpintero
, “
A novel broadband port-access scheme to interface several waveguide bands to a single Schottky barrier diode detector
,” in
International Conference on Infrared, Millimeter, and Terahertz Waves
(
IEEE
,
2023
).
21.
S.
Iwamatsu
,
M.
Ali
,
J. L. F.
Estévez
,
M.
Grzeslo
,
S.
Makhlouf
,
A.
Rivera
,
G.
Carpintero
, and
A.
Stöhr
, “
Terahertz photodiode integration with multi-octave-bandwidth dielectric rod waveguide probe
,”
Opt. Lett.
48
,
6275
6278
(
2023
).
22.
D.
Headland
,
W.
Withayachumnankul
,
X.
Yu
,
M.
Fujita
, and
T.
Nagatsuma
, “
Unclad microphotonics for terahertz waveguides and systems
,”
J. Lightwave Technol.
38
,
6853
6862
(
2020
).
23.
A.
Shurakov
,
I.
Belikov
,
A.
Prikhodko
,
M.
Ershova
, and
G.
Goltsman
, “
Superconducting electronic–photonic platform for HEB-based terahertz spectrometers
,”
Appl. Sci.
13
,
5892
(
2023
).
24.
A. E.
Torres-García
,
J. M.
Pérez-Escudero
,
J.
Teniente
,
R.
Gonzalo
, and
I.
Ederra
, “
Silicon integrated subharmonic mixer on a photonic-crystal platform
,”
IEEE Trans. Terahertz Sci. Technol.
11
,
79
89
(
2021
).
25.
K. F.
Casey
, “
Electromagnetic shielding behavior of wire-mesh screens
,”
IEEE Trans. Electromagn. Compat.
30
,
298
306
(
1988
).
26.
K.
Tsuruda
,
M.
Fujita
, and
T.
Nagatsuma
, “
Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab
,”
Opt. Express
23
,
31977
31990
(
2015
).
27.
F.
Laerme
,
A.
Schilp
,
K.
Funk
, and
M.
Offenberg
, in
IEEE International Conference on Micro Electrical Mechanical Systems
(
IEEE
,
1999
), pp.
211
216
.
28.
Z.
Jiang
,
M. I. B.
Shams
,
L.-J.
Cheng
,
P.
Fay
,
J. L.
Hesler
,
C-y E.
Tong
, and
L.
Liu
, “
Investigation and demonstration of a WR-4.3 optically controlled waveguide attenuator
,”
IEEE Trans. Terahertz Sci. Technol.
7
,
20
26
(
2017
).
29.
S. M.
Hanham
,
M. M.
Ahmad
,
S.
Lucyszyn
, and
N.
Klein
, “
LED-switchable high-Q packaged THz microbeam resonators
,”
IEEE Trans. Terahertz Sci. Technol.
7
,
199
208
(
2017
).
30.
J.
Ren
,
Z.
Jiang
,
P.
Fay
,
J. L.
Hesler
,
C.-Y. E.
Tong
, and
L.
Liu
, “
High-performance WR-4.3 optically controlled variable attenuator with 60-dB range
,”
IEEE Microwave Wireless Compon. Lett.
28
,
512
514
(
2018
).
31.
K.
Sasao
and
Y.
Monnai
, “
Variable terahertz attenuator integrated on nonradiative guide using photoinduced carriers
,”
IEEE Trans. Terahertz Sci. Technol.
10
,
256
259
(
2020
).
You do not currently have access to this content.