Phase change materials (PCMs) present opportunities for efficient thermal management due to their high latent heat of melting. However, a fundamental challenge for PCM cooling is the presence of a growing liquid layer of relatively low thermal conductivity melted PCM that limits heat transfer. Dynamic phase change material (dynPCM) uses an applied pressure to pump away the melt layer and achieve a thin liquid layer, ensuring high heat transfer for extended periods. This paper investigates heat transfer during dynPCM cooling when the heated surface has extended features made from high thermal conductivity copper (Cu). Using experiments and finite element simulations, we investigate the heat transfer performance of dynPCM paraffin wax on finned Cu surfaces. A total of 102 transient temperature measurements characterize the performance of dynPCM with extended surfaces and compare the performance with other cooling methods including hybrid PCM and air cooling. The study examines the effects of fin geometry, applied power (20–65 W), and pressure (0.97–12.5 kPa). For dynPCM on a finned surface and a heating power of 65 W, the thermal conductance is 0.45 W/cm2-K, compared to 0.22 W/cm2-K for dynPCM on a flat surface and 0.10 W/cm2-K for hybrid PCM. The heat transfer is highest at the fin tips where the melt layer is thinnest, providing valuable design guidelines for future high performance dynPCM cooling technologies.

1.
A. L.
Moore
and
L.
Shi
,
Mater. Today
17
(
4
),
163
(
2014
).
2.
H. P.
de Bock
,
D.
Huitink
,
P.
Shamberger
,
J. S.
Lundh
,
S.
Choi
,
N.
Niedbalski
, and
L.
Boteler
,
J. Electron. Packag.
142
(
4
),
041111
(
2020
).
3.
J. G.
Kassakian
and
T. M.
Jahns
,
IEEE J. Emerging Sel. Top. Power Electron.
1
(
2
),
47
(
2013
).
4.
Q.
Wang
,
B.
Jiang
,
B.
Li
, and
Y.
Yan
,
Renewable Sustainable Energy Rev.
64
,
106
(
2016
).
5.
6.
M. M.
Farid
,
A. M.
Khudhair
,
S. A. K.
Razack
, and
S.
Al-Hallaj
,
Energy Convers. Manage.
45
(
9
),
1597
(
2004
).
7.
Z.
Ling
,
Z.
Zhang
,
G.
Shi
,
X.
Fang
,
L.
Wang
,
X.
Gao
,
Y.
Fang
,
T.
Xu
,
S.
Wang
, and
X.
Liu
,
Renewable Sustainable Energy Rev.
31
,
427
(
2014
).
8.
T.
Yang
,
W. P.
King
, and
N.
Miljkovic
,
Cell Rep. Phys. Sci.
2
(
8
),
100540
(
2021
).
9.
P. J.
Shamberger
,
J. Heat Transfer
138
(
2
),
024502
(
2016
).
10.
P. J.
Shamberger
and
N. M.
Bruno
,
Appl. Energy
258
,
113955
(
2020
).
11.
T.-J.
Lu
,
Int. J. Heat Mass Transfer
43
(
13
),
2245
(
2000
).
12.
M. T.
Barako
,
S.
Lingamneni
,
J. S.
Katz
,
T.
Liu
,
K. E.
Goodson
, and
J.
Tice
,
J. Appl. Phys.
124
(
14
),
145103
(
2018
).
13.
R. D.
Weinstein
,
T. C.
Kopec
,
A. S.
Fleischer
,
E.
D'Addio
, and
C. A.
Bessel
,
J. Heat Transfer
130
(
4
),
042405
(
2008
).
14.
S.
Kim
,
T.
Yang
,
N.
Miljkovic
, and
W. P.
King
,
Int. J. Heat Mass Transfer
213
,
124263
(
2023
).
15.
T.
Yang
,
J. G.
Kang
,
P. B.
Weisensee
,
B.
Kwon
,
P. V.
Braun
,
N.
Miljkovic
, and
W. P.
King
,
Appl. Phys. Lett.
116
(
7
),
071901
(
2020
).
16.
J.
Woods
,
A.
Mahvi
,
A.
Goyal
,
E.
Kozubal
,
A.
Odukomaiya
, and
R.
Jackson
,
Nat. Energy
6
(
3
),
295
(
2021
).
17.
S.
Krishnan
,
S. V.
Garimella
, and
S. S.
Kang
,
IEEE Trans. Compon. Packag. Technol.
28
(
2
),
281
(
2005
).
18.
L.
Fan
and
J. M.
Khodadadi
,
Renewable Sustainable Energy Rev.
15
(
1
),
24
(
2011
).
19.
V.
Shatikian
,
G.
Ziskind
, and
R.
Letan
,
Int. J. Heat Mass Transfer
48
(
17
),
3689
(
2005
).
20.
W. R.
Humphries
and
E. I.
Griggs
,
A Design Handbook for Phase Change Thermal Control and Energy Storage Devices
(
NASA
,
Hunstville, AL
,
1977
).
21.
O.
Mesalhy
,
K.
Lafdi
,
A.
Elgafy
, and
K.
Bowman
,
Energy Convers. Manage.
46
(
6
),
847
(
2005
).
22.
Z.-R.
Li
,
S.
Baghaei Oskouei
,
G.-T.
Fu
,
Ö.
Bayer
, and
L.-W.
Fan
,
J. Energy Storage
55
,
105576
(
2022
).
23.
S.
Mahmoud
,
A.
Tang
,
C.
Toh
,
R.
Al-Dadah
, and
S. L.
Soo
,
Appl. Energy
112
,
1349
(
2013
).
24.
P.
Zhang
,
X.
Xiao
, and
Z. W.
Ma
,
Appl. Energy
165
,
472
(
2016
).
25.
R. C.
McAfee
,
M. C.
Fish
,
A. A.
Wilson
,
H. H.
Tsang
,
J. A.
Boltersdorf
,
S.
Kim
,
N.
Miljkovic
, and
W. P.
King
,
ACS Appl. Eng. Mater.
1
(
11
),
2847
(
2023
).
26.
A.
Stupar
,
U.
Drofenik
, and
J. W.
Kolar
,
IEEE Trans. Compon., Packag., Manuf. Technol.
2
(
1
),
102
(
2012
).
27.
T.
Rozenfeld
,
Y.
Kozak
,
R.
Hayat
, and
G.
Ziskind
,
Int. J. Heat Mass Transfer
86
,
465
(
2015
).
28.
A.
Saito
,
Y.
Utaka
,
K.
Shinoda
, and
K.
Katayama
,
Bull. JSME
29
(
255
),
2946
(
1986
).
29.
M. K.
Moallemi
,
B. W.
Webb
, and
R.
Viskanta
,
J. Heat Transfer
108
(
4
),
894
(
1986
).
30.
T.
Hirata
,
Y.
Makino
, and
Y.
Kaneko
,
Int. J. Heat Mass Transfer
34
(
12
),
3097
(
1991
).
31.
T.
Shockner
and
G.
Ziskind
,
Appl. Therm. Eng.
219
,
119519
(
2023
).
32.
S. A.
Fomin
and
T. S.
Saitoh
,
Int. J. Heat Mass Transfer
42
(
22
),
4197
(
1999
).
33.
F. E.
Moore
and
Y.
Bayazitoglu
,
J. Heat Transfer
104
(
1
),
19
(
1982
).
34.
N.
Hu
,
R.-H.
Zhang
,
S.-T.
Zhang
,
J.
Liu
, and
L.-W.
Fan
,
Int. J. Heat Mass Transfer
138
,
713
(
2019
).
35.
W.
Fu
,
X.
Yan
,
Y.
Gurumukhi
,
V. S.
Garimella
,
W. P.
King
, and
N.
Miljkovic
,
Nat. Energy
7
(
3
),
270
(
2022
).
36.
V. S.
Garimella
,
W.
Fu
,
R. A.
Stavins
,
S.
Kim
,
T.
Shockner
,
E.
Koronio
,
G.
Ziskind
,
W. P.
King
, and
N.
Miljkovic
,
Appl. Phys. Lett.
124
(
12
),
123904
(
2024
).
37.
M.
Qin
,
Z.
Shen
,
F.
Xiong
,
S.
Han
, and
R.
Zou
,
ACS Energy Lett.
8
(
8
),
3552
(
2023
).
38.
J.
He
,
W.
Chu
, and
Q.
Wang
,
Appl. Therm. Eng.
230
,
120707
(
2023
).
39.
A.
Saito
,
H.
Hong
, and
O.
Hirokane
,
Int. J. Heat Mass Transfer
35
(
2
),
295
(
1992
).
40.
N. R.
Jankowski
and
F. P.
McCluskey
,
Appl. Energy
113
,
1525
(
2014
).
You do not currently have access to this content.