We demonstrate a qubit-readout architecture where the dispersive coupling is entirely mediated by a kinetic inductance. This allows us to engineer the dispersive shift of the readout resonator independent of the qubit and resonator capacitances. We validate the pure kinetic coupling concept and demonstrate various generalized flux qubit regimes from plasmon to fluxon, with dispersive shifts ranging from 60 to 2 at the half-flux quantum sweet spot. We achieve readout performances comparable to conventional architectures with quantum state preparation fidelities of 99.7% and 92.7% for the ground and excited states, respectively, and below 0.1% leakage to non-computational states.
REFERENCES
1.
A.
Wallraff
,
D. I.
Schuster
,
A.
Blais
,
L.
Frunzio
,
R.-S.
Huang
,
J.
Majer
,
S.
Kumar
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics
,” Nature
431
, 162
(2004
).2.
A.
Blais
,
A. L.
Grimsmo
,
S. M.
Girvin
, and
A.
Wallraff
, “
Circuit quantum electrodynamics
,” Rev. Mod. Phys.
93
, 025005
(2021
).3.
Y.
Sung
,
L.
Ding
,
J.
Braumüller
,
A.
Vepsäläinen
,
B.
Kannan
,
M.
Kjaergaard
,
A.
Greene
,
G. O.
Samach
,
C.
McNally
,
D.
Kim
,
A.
Melville
,
B. M.
Niedzielski
,
M. E.
Schwartz
,
J. L.
Yoder
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable coupler
,” Phys. Rev. X
11
, 021058
(2021
).4.
C. R.
Conner
,
A.
Bienfait
,
H.-S.
Chang
,
M.-H.
Chou
,
É.
Dumur
,
J.
Grebel
,
G. A.
Peairs
,
R. G.
Povey
,
H.
Yan
,
Y. P.
Zhong
, and
A. N.
Cleland
, “
Superconducting qubits in a flip-chip architecture
,” Appl. Phys. Lett.
118
, 232602
(2021
).5.
S.
Kosen
,
H.-X.
Li
,
M.
Rommel
,
D.
Shiri
,
C.
Warren
,
L.
Grönberg
,
J.
Salonen
,
T.
Abad
,
J.
Biznárová
,
M.
Caputo
,
L.
Chen
,
K.
Grigoras
,
G.
Johansson
,
A. F.
Kockum
,
C.
Križan
,
D. P.
Lozano
,
G. J.
Norris
,
A.
Osman
,
J.
Fernández-Pendás
,
A.
Ronzani
,
A. F.
Roudsari
,
S.
Simbierowicz
,
G.
Tancredi
,
A.
Wallraff
,
C.
Eichler
,
J.
Govenius
, and
J.
Bylander
, “
Building blocks of a flip-chip integrated superconducting quantum processor
,” Quantum Sci. Technol.
7
, 035018
(2022
).6.
Y.
Wu
,
W.-S.
Bao
,
S.
Cao
,
F.
Chen
,
M.-C.
Chen
,
X.
Chen
,
T.-H.
Chung
,
H.
Deng
,
Y.
Du
,
D.
Fan
,
M.
Gong
,
C.
Guo
,
C.
Guo
,
S.
Guo
,
L.
Han
,
L.
Hong
,
H.-L.
Huang
,
Y.-H.
Huo
,
L.
Li
,
N.
Li
,
S.
Li
,
Y.
Li
,
F.
Liang
,
C.
Lin
,
J.
Lin
,
H.
Qian
,
D.
Qiao
,
H.
Rong
,
H.
Su
,
L.
Sun
,
L.
Wang
,
S.
Wang
,
D.
Wu
,
Y.
Xu
,
K.
Yan
,
W.
Yang
,
Y.
Yang
,
Y.
Ye
,
J.
Yin
,
C.
Ying
,
J.
Yu
,
C.
Zha
,
C.
Zhang
,
H.
Zhang
,
K.
Zhang
,
Y.
Zhang
,
H.
Zhao
,
Y.
Zhao
,
L.
Zhou
,
Q.
Zhu
,
C.-Y.
Lu
,
C.-Z.
Peng
,
X.
Zhu
, and
J.-W.
Pan
, “
Strong quantum computational advantage using a superconducting quantum processor
,” Phys. Rev. Lett.
127
, 180501
(2021
).7.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F. G. S. L.
Brandao
,
D. A.
Buell
,
B.
Burkett
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
R.
Collins
,
W.
Courtney
,
A.
Dunsworth
,
E.
Farhi
,
B.
Foxen
,
A.
Fowler
,
C.
Gidney
,
M.
Giustina
,
R.
Graff
,
K.
Guerin
,
S.
Habegger
,
M. P.
Harrigan
,
M. J.
Hartmann
,
A.
Ho
,
M.
Hoffmann
,
T.
Huang
,
T. S.
Humble
,
S. V.
Isakov
,
E.
Jeffrey
,
Z.
Jiang
,
D.
Kafri
,
K.
Kechedzhi
,
J.
Kelly
,
P. V.
Klimov
,
S.
Knysh
,
A.
Korotkov
,
F.
Kostritsa
,
D.
Landhuis
,
M.
Lindmark
,
E.
Lucero
,
D.
Lyakh
,
S.
Mandrà
,
J. R.
McClean
,
M.
McEwen
,
A.
Megrant
,
X.
Mi
,
K.
Michielsen
,
M.
Mohseni
,
J.
Mutus
,
O.
Naaman
,
M.
Neeley
,
C.
Neill
,
M. Y.
Niu
,
E.
Ostby
,
A.
Petukhov
,
J. C.
Platt
,
C.
Quintana
,
E. G.
Rieffel
,
P.
Roushan
,
N. C.
Rubin
,
D.
Sank
,
K. J.
Satzinger
,
V.
Smelyanskiy
,
K. J.
Sung
,
M. D.
Trevithick
,
A.
Vainsencher
,
B.
Villalonga
,
T.
White
,
Z. J.
Yao
,
P.
Yeh
,
A.
Zalcman
,
H.
Neven
, and
J. M.
Martinis
, “
Quantum supremacy using a programmable superconducting processor
,” Nature
574
, 505
(2019
).8.
P.
Campagne-Ibarcq
,
P.
Six
,
L.
Bretheau
,
A.
Sarlette
,
M.
Mirrahimi
,
P.
Rouchon
, and
B.
Huard
, “
Observing quantum state diffusion by heterodyne detection of fluorescence
,” Phys. Rev. X
6
, 011002
(2016
).9.
Z. K.
Minev
,
S. O.
Mundhada
,
S.
Shankar
,
P.
Reinhold
,
R.
Gutiérrez-Jáuregui
,
R. J.
Schoelkopf
,
M.
Mirrahimi
,
H. J.
Carmichael
, and
M. H.
Devoret
, “
To catch and reverse a quantum jump mid-flight
,” Nature
570
, 200
(2019
).10.
S.
Léger
,
J.
Puertas-Martínez
,
K.
Bharadwaj
,
R.
Dassonneville
,
J.
Delaforce
,
F.
Foroughi
,
V.
Milchakov
,
L.
Planat
,
O.
Buisson
,
C.
Naud
,
W.
Hasch-Guichard
,
S.
Florens
,
I.
Snyman
, and
N.
Roch
, “
Observation of quantum many-body effects due to zero point fluctuations in superconducting circuits
,” Nat. Commun.
10
, 5259
(2019
).11.
J.
Stevens
,
D.
Szombati
,
M.
Maffei
,
C.
Elouard
,
R.
Assouly
,
N.
Cottet
,
R.
Dassonneville
,
Q.
Ficheux
,
S.
Zeppetzauer
,
A.
Bienfait
,
A. N.
Jordan
,
A.
Auffèves
, and
B.
Huard
, “
Energetics of a single qubit gate
,” Phys. Rev. Lett.
129
, 110601
(2022
).12.
S.
Chakram
,
K.
He
,
A. V.
Dixit
,
A. E.
Oriani
,
R. K.
Naik
,
N.
Leung
,
H.
Kwon
,
W.-L.
Ma
,
L.
Jiang
, and
D. I.
Schuster
, “
Multimode photon blockade
,” Nat. Phys.
18
, 879
(2022
).13.
N.
Mehta
,
R.
Kuzmin
,
C.
Ciuti
, and
V. E.
Manucharyan
, “
Down-conversion of a single photon as a probe of many-body localization
,” Nature
613
, 650
(2023
).14.
N.
Roch
,
M. E.
Schwartz
,
F.
Motzoi
,
C.
Macklin
,
R.
Vijay
,
A. W.
Eddins
,
A. N.
Korotkov
,
K. B.
Whaley
,
M.
Sarovar
, and
I.
Siddiqi
, “
Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits
,” Phys. Rev. Lett.
112
, 170501
(2014
).15.
R.
Vijay
,
D. H.
Slichter
, and
I.
Siddiqi
, “
Observation of quantum jumps in a superconducting artificial atom
,” Phys. Rev. Lett.
106
, 110502
(2011
).16.
J.
Heinsoo
,
C. K.
Andersen
,
A.
Remm
,
S.
Krinner
,
T.
Walter
,
Y.
Salathé
,
S.
Gasparinetti
,
J.-C.
Besse
,
A.
Potočnik
,
A.
Wallraff
, and
C.
Eichler
, “
Rapid high-fidelity multiplexed readout of superconducting qubits
,” Phys. Rev. Appl.
10
, 034040
(2018
).17.
F.
Swiadek
,
R.
Shillito
,
P.
Magnard
,
A.
Remm
,
C.
Hellings
,
N.
Lacroix
,
Q.
Ficheux
,
D. C.
Zanuz
,
G. J.
Norris
,
A.
Blais
,
S.
Krinner
, and
A.
Wallraff
, “
Enhancing dispersive readout of superconducting qubits through dynamic control of the dispersive shift: Experiment and theory
,” arXiv:2307.07765 (2023
).18.
I.
Takmakov
et al, “
Minimizing the discrimination time for quantum states of an artificial atom
,” Phys. Rev. Appl.
15
(6
), 064029
(2021
).19.
M.
Hofheinz
,
H.
Wang
,
M.
Ansmann
,
R. C.
Bialczak
,
E.
Lucero
,
M.
Neeley
,
A. D.
O'Connell
,
D.
Sank
,
J.
Wenner
,
J. M.
Martinis
, and
A. N.
Cleland
, “
Synthesizing arbitrary quantum states in a superconducting resonator
,” Nature
459
, 546
(2009
).20.
G.
Kirchmair
,
B.
Vlastakis
,
Z.
Leghtas
,
S. E.
Nigg
,
H.
Paik
,
E.
Ginossar
,
M.
Mirrahimi
,
L.
Frunzio
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Observation of quantum state collapse and revival due to the single-photon Kerr effect
,” Nature
495
, 205
(2013
).21.
K.
Geerlings
,
Z.
Leghtas
,
I. M.
Pop
,
S.
Shankar
,
L.
Frunzio
,
R. J.
Schoelkopf
,
M.
Mirrahimi
, and
M. H.
Devoret
, “
Demonstrating a driven reset protocol for a superconducting qubit
,” Phys. Rev. Lett.
110
, 120501
(2013
).22.
K. W.
Murch
,
U.
Vool
,
D.
Zhou
,
S. J.
Weber
,
S. M.
Girvin
, and
I.
Siddiqi
, “
Cavity-assisted quantum bath engineering
,” Phys. Rev. Lett.
109
, 183602
(2012
).23.
S.
Shankar
,
M.
Hatridge
,
Z.
Leghtas
,
K. M.
Sliwa
,
A.
Narla
,
U.
Vool
,
S. M.
Girvin
,
L.
Frunzio
,
M.
Mirrahimi
, and
M. H.
Devoret
, “
Autonomously stabilized entanglement between two superconducting quantum bits
,” Nature
504
, 419
(2013
).24.
Y.
Lu
,
A.
Maiti
,
J. W. O.
Garmon
,
S.
Ganjam
,
Y.
Zhang
,
J.
Claes
,
L.
Frunzio
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
High-fidelity parametric beamsplitting with a parity-protected converter
,” Nat. Commun.
14
(1
), 5767
(2023
).25.
J. P.
Gambino
,
S. A.
Adderly
, and
J. U.
Knickerbocker
, “
An overview of through-silicon-via technology and manufacturing challenges
,” Microelectron. Eng.
135
, 73
(2015
).26.
D. R. W.
Yost
,
M. E.
Schwartz
,
J.
Mallek
,
D.
Rosenberg
,
C.
Stull
,
J. L.
Yoder
,
G.
Calusine
,
M.
Cook
,
R.
Das
,
A. L.
Day
,
E. B.
Golden
,
D. K.
Kim
,
A.
Melville
,
B. M.
Niedzielski
,
W.
Woods
,
A. J.
Kerman
, and
W. D.
Oliver
, “
Solid-state qubits integrated with superconducting through-silicon vias
,” npj Quantum Inf.
6
, 59
(2020
).27.
J. A.
Alfaro-Barrantes
,
M.
Mastrangeli
,
D. J.
Thoen
,
S.
Visser
,
J.
Bueno
,
J. J. A.
Baselmans
, and
P. M.
Sarro
, “
Highly-conformal sputtered through-silicon vias with sharp superconducting transition
,” J. Microelectromech. Syst.
30
, 253
(2021
).28.
J.
Yu
,
Y.
Zheng
,
S.
Zhou
,
Q.
Wang
,
S.
Wu
,
H.
Wu
,
T.
Li
, and
J.
Cai
, “
Indium-based flip-chip interconnection for superconducting quantum computing application
,” in 23rd International Conference on Electronic Packaging Technology (ICEPT)
(2022
).29.
K. N.
Smith
,
G. S.
Ravi
,
J. M.
Baker
, and
F. T.
Chong
, “
Scaling superconducting quantum computers with chiplet architectures
,” in 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)
(2022
).30.
M.
Field
,
A. Q.
Chen
,
B.
Scharmann
,
E. A.
Sete
,
F.
Oruc
,
K.
Vu
,
V.
Kosenko
,
J. Y.
Mutus
,
S.
Poletto
, and
A.
Bestwick
, “
Modular superconducting qubit architecture with a multi-chip tunable coupler
,” arXiv:2308.09240 (2024
).31.
L.
Grünhaupt
,
M.
Spiecker
,
D.
Gusenkova
,
N.
Maleeva
,
S. T.
Skacel
,
I.
Takmakov
,
F.
Valenti
,
P.
Winkel
,
H.
Rotzinger
,
W.
Wernsdorfer
,
A. V.
Ustinov
, and
I. M.
Pop
, “
Granular aluminium as a superconducting material for high-impedance quantum circuits
,” Nat. Mater.
18
, 816
–819
(2019
).32.
D.
Rieger
,
S.
Günzler
,
M.
Spiecker
,
P.
Paluch
,
P.
Winkel
,
L.
Hahn
,
J. K.
Hohmann
,
A.
Bacher
,
W.
Wernsdorfer
, and
I. M.
Pop
, “
Granular aluminium nanojunction fluxonium qubit
,” Nat. Mater.
22
, 194
(2023
).33.
F.
Yan
,
Y.
Sung
,
P.
Krantz
,
A.
Kamal
,
D. K.
Kim
,
J. L.
Yoder
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Engineering framework for optimizing superconducting qubit designs
,” arXiv:2006.04130 (2020
).34.
W. C.
Smith
,
A.
Kou
,
U.
Vool
,
I. M.
Pop
,
L.
Frunzio
,
R. J.
Schoelkopf
, and
M. H.
Devoret
, “
Quantization of inductively shunted superconducting circuits
,” Phys. Rev. B
94
, 144507
(2016
).35.
V. E.
Manucharyan
,
J.
Koch
,
L. I.
Glazman
, and
M. H.
Devoret
, “
Fluxonium: Single cooper-pair circuit free of charge offsets
,” Science
326
, 113
(2009
).36.
F.
Bao
,
H.
Deng
,
D.
Ding
,
R.
Gao
,
X.
Gao
,
C.
Huang
,
X.
Jiang
,
H.-S.
Ku
,
Z.
Li
,
X.
Ma
,
X.
Ni
,
J.
Qin
,
Z.
Song
,
H.
Sun
,
C.
Tang
,
T.
Wang
,
F.
Wu
,
T.
Xia
,
W.
Yu
,
F.
Zhang
,
G.
Zhang
,
X.
Zhang
,
J.
Zhou
,
X.
Zhu
,
Y.
Shi
,
J.
Chen
,
H.-H.
Zhao
, and
C.
Deng
, “
Fluxonium: An alternative qubit platform for high-fidelity operations
,” Phys. Rev. Lett.
129
, 010502
(2022
).37.
H.
Rotzinger
,
S. T.
Skacel
,
M.
Pfirrmann
,
J. N.
Voss
,
J.
Münzberg
,
S.
Probst
,
P.
Bushev
,
M. P.
Weides
,
A. V.
Ustinov
, and
J. E.
Mooij
, “
Aluminium-oxide wires for superconducting high kinetic inductance circuits
,” Supercond. Sci. Technol.
30
, 025002
(2016
).38.
L.
Grünhaupt
,
N.
Maleeva
,
S. T.
Skacel
,
M.
Calvo
,
F.
Levy-Bertrand
,
A. V.
Ustinov
,
H.
Rotzinger
,
A.
Monfardini
,
G.
Catelani
, and
I. M.
Pop
, “
Loss mechanisms and quasiparticle dynamics in superconducting microwave resonators made of thin-film granular aluminum
,” Phys. Rev. Lett.
121
, 117001
(2018
).39.
P.
Winkel
,
I.
Takmakov
,
D.
Rieger
,
L.
Planat
,
W.
Hasch-Guichard
,
L.
Grünhaupt
,
N.
Maleeva
,
F.
Foroughi
,
F.
Henriques
,
K.
Borisov
,
J.
Ferrero
,
A. V.
Ustinov
,
W.
Wernsdorfer
,
N.
Roch
, and
I. M.
Pop
, “
Nondegenerate parametric amplifiers based on dispersion-engineered Josephson-junction arrays
,” Phys. Rev. Appl.
13
, 024015
(2020
).40.
G.
Rastelli
,
I. M.
Pop
, and
F. W. J.
Hekking
, “
Quantum phase slips in Josephson junction rings
,” Phys. Rev. B
87
, 174513
(2013
).41.
D.
Gusenkova
,
M.
Spiecker
,
R.
Gebauer
,
M.
Willsch
,
D.
Willsch
,
F.
Valenti
,
N.
Karcher
,
L.
Grünhaupt
,
I.
Takmakov
,
P.
Winkel
,
D.
Rieger
,
A. V.
Ustinov
,
N.
Roch
,
W.
Wernsdorfer
,
K.
Michielsen
,
O.
Sander
, and
I. M.
Pop
, “
Quantum nondemolition dispersive readout of a superconducting artificial atom using large photon numbers
,” Phys. Rev. Appl.
15
, 064030
(2021
).42.
M. F.
Dumas
,
B.
Groleau-Paré
,
A.
McDonald
,
M. H.
Muñoz-Arias
,
C.
Lledó
,
B.
D'Anjou
, and
A.
Blais
, “
Unified picture of measurement-induced ionization in the transmon
,” arXiv:2402.06615 (2024
).43.
R.
Shillito
,
A.
Petrescu
,
J.
Cohen
,
J.
Beall
,
M.
Hauru
,
M.
Ganahl
,
A. G.
Lewis
,
G.
Vidal
, and
A.
Blais
, “
Dynamics of transmon ionization
,” Phys. Rev. Appl.
18
, 034031
(2022
).44.
J.
Cohen
,
A.
Petrescu
,
R.
Shillito
, and
A.
Blais
, “
Reminiscence of classical chaos in driven transmons
,” PRX Quantum
4
, 020312
(2023
).45.
T.
Thorbeck
,
Z.
Xiao
,
A.
Kamal
, and
L. C. G.
Govia
, “
Readout-induced suppression and enhancement of superconducting qubit lifetimes
,” Phys. Rev. Lett.
132
, 090602
(2024
).46.
T.
Walter
,
P.
Kurpiers
,
S.
Gasparinetti
,
P.
Magnard
,
A.
Potočnik
,
Y.
Salathé
,
M.
Pechal
,
M.
Mondal
,
M.
Oppliger
,
C.
Eichler
, and
A.
Wallraff
, “
Rapid high-fidelity single-shot dispersive readout of superconducting qubits
,” Phys. Rev. Appl.
7
, 054020
(2017
).47.
M. O.
Tholén
,
R.
Borgani
,
G. R.
Di Carlo
,
A.
Bengtsson
,
C.
Križan
,
M.
Kudra
,
G.
Tancredi
,
J.
Bylander
,
P.
Delsing
,
S.
Gasparinetti
, and
D. B.
Haviland
, “
Measurement and control of a superconducting quantum processor with a fully integrated radio-frequency system on a chip
,” Rev. Sci. Instrum.
93
, 104711
(2022
).48.
D.
Ristè
,
C. C.
Bultink
,
K. W.
Lehnert
, and
L.
DiCarlo
, “
Feedback control of a solid-state qubit using high-fidelity projective measurement
,” Phys. Rev. Lett.
109
, 240502
(2012
).49.
Y.
Sunada
,
S.
Kono
,
J.
Ilves
,
S.
Tamate
,
T.
Sugiyama
,
Y.
Tabuchi
, and
Y.
Nakamura
, “
Fast readout and reset of a superconducting qubit coupled to a resonator with an intrinsic purcell filter
,” Phys. Rev. Appl.
17
, 044016
(2022
).50.
I.
Siddiqi
, “
Engineering high-coherence superconducting qubits
,” Nat. Rev. Mater.
6
, 875
(2021
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.