III–V/III-nitride p–n junctions were realized via crystal heterogeneous integration, and the resulting diodes were characterized to analyze electrical behavior and junction quality. p-type In0.53Ga0.47As, which is a well-established base layer in InP heterojunction bipolar transistor (HBT) technology, was used in combination with a homoepitaxial n-type GaN. The latter offers low dislocation density, coupled with high critical electric field and saturation velocity, which are attractive for use in future HBT collector layers. Transmission electron microscopy confirms an abrupt interface in the fabricated heterogeneous diodes. Electrical characterization of the diodes reveals a near-unity ideality factor (n ∼ 1.07) up to 145 °C, a high rectification ratio of ∼108, and a low interface trap density of 3.7 × 1012 cm−2.

1.
M.
Urteaga
,
Z.
Griffith
,
M.
Seo
,
J.
Hacker
, and
M. J. W.
Rodwell
, “
InP HBT technologies for THz integrated circuits
,”
Proc. IEEE
105
(
6
),
1051
1067
(
2017
).
2.
S.
Ozaki
,
J.
Yaita
,
A.
Yamada
,
Y.
Kumazaki
,
Y.
Minoura
,
T.
Ohki
,
N.
Okamoto
,
N.
Nakamura
, and
J.
Kotani
, “
First demonstration of X-band AlGaN/GaN high electron mobility transistors using free-standing AlN substrate over 15 W mm−1 output power density
,”
Appl. Phys. Express
14
(
4
),
041004
(
2021
).
3.
B.
Romanczyk
,
X.
Zheng
,
M.
Guidry
,
H.
Li
,
N.
Hatui
,
C.
Wurm
,
A.
Krishna
,
E.
Ahmadi
,
S.
Keller
, and
U. K.
Mishra
, “
W-band power performance of SiN-passivated N-polar GaN deep recess HEMTs
,”
IEEE Electron Device Lett.
41
(
3
),
349
352
(
2020
).
4.
L. S.
McCarthy
,
I. P.
Smorchkova
,
H.
Xing
,
P.
Kozodoy
,
P.
Fini
,
J.
Limb
,
D. L.
Pulfrey
,
J. S.
Speck
,
M. J. W.
Rodwell
,
S. P.
DenBaars
, and
U. K.
Mishra
, “
GaN HBT: Toward an RF device
,”
IEEE Trans. Electron Devices
48
(
3
),
543
551
(
2001
).
5.
J.
Han
,
A. G.
Baca
,
R. J.
Shul
,
C. G.
Willison
,
L.
Zhang
,
F.
Ren
,
A. P.
Zhang
,
G. T.
Dang
,
S. M.
Donovan
,
X. A.
Cao
,
H.
Cho
,
K. B.
Jung
,
C. R.
Abernathy
,
S. J.
Pearton
, and
R. G.
Wilson
, “
Growth and fabrication of GaN/AlGaN heterojunction bipolar transistor
,”
Appl. Phys. Lett.
74
(
18
),
2702
2704
(
1999
).
6.
J. B.
Limb
,
H.
Xing
,
B.
Moran
,
L.
McCarthy
,
S. P.
DenBaars
, and
U. K.
Mishra
, “
High voltage operation (>80 V) of GaN bipolar junction transistors with low leakage
,”
Appl. Phys. Lett.
76
(
17
),
2457
2459
(
2000
).
7.
T.
Kumabe
,
H.
Watanabe
,
Y.
Ando
,
A.
Tanaka
,
S.
Nitta
,
Y.
Honda
, and
H.
Amano
, “
Regrowth-free fabrication of high-current-gain AlGaN/GaN heterojunction bipolar transistor with N-p-n configuration
,”
Appl. Phys. Express
15
(
4
),
046506
(
2022
).
8.
J.
Kim
,
N. G.
Toledo
,
S.
Lal
,
J.
Lu
,
T. E.
Buehl
, and
U. K.
Mishra
, “
Wafer-bonded p–n heterojunction of GaAs and chemomechanically polished N-polar GaN
,”
IEEE Electron Device Lett.
34
(
1
),
42
44
(
2013
).
9.
C.
Lian
,
H. G.
Xing
,
Y.-C.
Chang
, and
N.
Fichtenbaum
, “
Electrical transport properties of wafer-fused p-GaAs/n-GaN heterojunctions
,”
Appl. Phys. Lett.
93
(
11
),
112103
(
2008
).
10.
S. J.
Cho
,
D.
Liu
,
A.
Hardy
,
J.
Kim
,
J.
Gong
,
C. J.
Herrera-Rodriguez
,
E.
Swinnich
,
X.
Konstantinou
,
G.-Y.
Oh
,
D. G.
Kim
,
J. C.
Shin
,
J.
Papapolymerou
,
M.
Becker
,
J.-H.
Seo
,
J. D.
Albrecht
,
T. A.
Grotjohn
, and
Z.
Ma
, “
Fabrication of AlGaAs/GaAs/diamond heterojunctions for diamond-collector HBTs
,”
AIP Adv.
10
(
12
),
125226
(
2020
).
11.
D.
Liu
,
S. J.
Cho
,
J.-H.
Seo
,
K.
Kim
,
M.
Kim
,
J.
Shi
,
X.
Yin
,
W.
Choi
,
C.
Zhang
,
J.
Kim
,
M. A.
Baboli
,
J.
Park
,
J.
Bong
,
I.-K.
Lee
,
J.
Gong
,
S.
Mikael
,
J. H.
Ryu
,
P. K.
Mohseni
,
X.
Li
,
S.
Gong
,
X.
Wang
, and
Z.
Ma
, “
Lattice-mismatched semiconductor heterostructures
,” arXiv:181210225Phys, (
2018
).
12.
C.
Lian
,
H. G.
Xing
,
C. S.
Wang
,
D.
Brown
, and
L.
McCarthy
, “
Gain degradation mechanisms in wafer fused AlGaAs∕GaAs∕GaN heterojunction bipolar transistors
,”
Appl. Phys. Lett.
91
(
6
),
063502
(
2007
).
13.
J.
Gong
,
K.
Lu
,
J.
Kim
,
T.
Ng
,
D.
Kim
,
J.
Zhou
,
D.
Liu
,
J.
Kim
,
B. S.
Ooi
, and
Z.
Ma
, “
Influences of ALD Al2O3 on the surface band-bending of c-plane, Ga-face GaN
,”
Jpn. J. Appl. Phys.
61
(
1
),
011003
(
2021
).
14.
J.
Gong
,
Z.
Zheng
,
D.
Vincent
,
J.
Zhou
,
J.
Kim
,
D.
Kim
,
T. K.
Ng
,
B. S.
Ooi
,
K. J.
Chen
, and
Z.
Ma
, “
Interfacial band parameters of ultrathin ALD–Al2O3, ALD–HfO2, and PEALD–AlN/ALD–Al2O3 on c-plane, Ga-face GaN through XPS measurements
,”
J. Appl. Phys.
132
(
13
),
135302
(
2022
).
15.
J.
Gong
,
J.
Zhou
,
A.
Dheenan
,
M.
Sheikhi
,
F.
Alema
,
T. K.
Ng
,
S. S.
Pasayat
,
Q.
Gan
,
A.
Osinsky
,
V.
Gambin
,
C.
Gupta
,
S.
Rajan
,
B. S.
Ooi
, and
Z.
Ma
, “
Band alignment of grafted monocrystalline Si (001)/β-Ga2O3 (010) p-n heterojunction determined by X-ray photoelectron spectroscopy
,”
Appl. Surf. Sci.
655
,
159615
(
2024
).
16.
J.
Gong
,
D.
Kim
,
H.
Jang
,
F.
Alema
,
Q.
Wang
,
T. K.
Ng
,
S.
Qiu
,
J.
Zhou
,
X.
Su
,
Q.
Lin
,
R.
Singh
,
H.
Abbasi
,
K.
Chabak
,
G.
Jessen
,
C.
Cheung
,
V.
Gambin
,
S. S.
Pasayat
,
A.
Osinsky
,
Boon
,
S.
Ooi
,
C.
Gupta
, and
Z.
Ma
, “
Monocrystalline Si/β-Ga2O3 p-n heterojunction diodes fabricated via grafting
,” arXiv:2305.19138 (
2023
).
17.
T.
Maeda
,
T.
Narita
,
S.
Yamada
,
T.
Kachi
,
T.
Kimoto
,
M.
Horita
, and
J.
Suda
, “
Impact ionization coefficients and critical electric field in GaN
,”
J. Appl. Phys.
129
(
18
),
185702
(
2021
).
18.
L.
Cao
,
Z.
Zhu
,
G.
Harden
,
H.
Ye
,
J.
Wang
,
A.
Hoffman
, and
P. J.
Fay
, “
Temperature dependence of electron and hole impact ionization coefficients in GaN
,”
IEEE Trans. Electron Devices
68
(
3
),
1228
1234
(
2021
).
19.
A. M.
Ozbek
, “
Measurement of impact ionization coefficients in gallium nitride
,” Ph.D. thesis (
North Carolina State University
,
2012
).
20.
C.
Roder
,
S.
Einfeldt
,
S.
Figge
, and
D.
Hommel
, “
Temperature dependence of the thermal expansion of GaN
,”
Phys. Rev. B
72
(
8
),
085218
(
2005
).
21.
V. M.
Glazov
,
A. S.
Pashinkin
, and
L. M.
Pavlova
, “
Thermal expansion of gallium and indium phosphides: Thermodynamic evaluation
,”
Inorg. Mater.
37
(
12
),
1207
1215
(
2001
).
22.
Kyocera
, “
Single-Crystal Sapphire Datasheet
,” [Online]. Available: https://global.kyocera.com/prdct/fc/product/pdf/s_c_sapphire.pdf
23.
S.
Mita
,
R.
Collazo
,
A.
Rice
,
R. F.
Dalmau
, and
Z.
Sitar
, “
Influence of gallium supersaturation on the properties of GaN grown by metalorganic chemical vapor deposition
,”
J. Appl. Phys.
104
(
1
),
013521
(
2008
).
24.
P.
Reddy
,
S.
Washiyama
,
F.
Kaess
,
R.
Kirste
,
S.
Mita
,
R.
Collazo
, and
Z.
Sitar
, “
Point defect reduction in MOCVD (Al)GaN by chemical potential control and a comprehensive model of C incorporation in GaN
,”
J. Appl. Phys.
122
(
24
),
245702
(
2017
).
25.
Y.
Liu
,
B.
Raghothamachar
,
H.
Peng
,
T.
Ailihumaer
,
M.
Dudley
,
R.
Collazo
,
J.
Tweedie
,
Z.
Sitar
,
F.
Shadi Shahedipour-Sandvik
,
K. A.
Jones
,
A.
Armstrong
,
A. A.
Allerman
,
K.
Grabianska
,
R.
Kucharski
, and
M.
Bockowski
, “
Synchrotron X-ray topography characterization of high quality ammonothermal-grown gallium nitride substrates
,”
J. Cryst. Growth
551
,
125903
(
2020
).
26.
P.
Bagheri
,
P.
Reddy
,
J. H.
Kim
,
R.
Rounds
,
T.
Sochacki
,
R.
Kirste
,
M.
Bockowski
,
R.
Collazo
, and
Z.
Sitar
, “
Impact of impurity-based phonon resonant scattering on thermal conductivity of single crystalline GaN
,”
Appl. Phys. Lett.
117
(
8
),
082101
(
2020
).
27.
T.
Sochacki
,
Z.
Bryan
,
M.
Amilusik
,
M.
Bobea
,
M.
Fijalkowski
,
I.
Bryan
,
B.
Lucznik
,
R.
Collazo
,
J. L.
Weyher
,
R.
Kucharski
,
I.
Grzegory
,
M.
Bockowski
, and
Z.
Sitar
, “
HVPE-GaN grown on MOCVD-GaN/sapphire template and ammonothermal GaN seeds: Comparison of structural, optical, and electrical properties
,”
J. Cryst. Growth
394
,
55
60
(
2014
).
28.
S.
Rathkanthiwar
,
P.
Bagheri
,
D.
Khachariya
,
S.
Mita
,
S.
Pavlidis
,
P.
Reddy
,
R.
Kirste
,
J.
Tweedie
,
Z.
Sitar
, and
R.
Collazo
, “
Point-defect management in homoepitaxially grown Si-doped GaN by MOCVD for vertical power devices
,”
Appl. Phys. Express
15
(
5
),
051003
(
2022
).
29.
F.
Kaess
,
S.
Mita
,
J.
Xie
,
P.
Reddy
,
A.
Klump
,
L. H.
Hernandez-Balderrama
,
S.
Washiyama
,
A.
Franke
,
R.
Kirste
,
A.
Hoffmann
,
R.
Collazo
, and
Z.
Sitar
, “
Correlation between mobility collapse and carbon impurities in Si-doped GaN grown by low pressure metalorganic chemical vapor deposition
,”
J. Appl. Phys.
120
(
10
),
105701
(
2016
).
30.
G. B.
Stringfellow
,
Organometallic Vapor-Phase Epitaxy: Theory and Practice
(
Elsevier
,
1999
).
31.
G.
Kästner
,
T.
Akatsu
,
S.
Senz
,
A.
Plössl
, and
U.
Gösele
, “
Large-area wafer bonding of GaAs using hydrogen and ultrahigh vacuum atmospheres
,”
Appl. Phys. Mater. Sci. Process.
70
(
1
),
13
19
(
2000
).
32.
M. J.
Jackson
,
B. L.
Jackson
, and
M. S.
Goorsky
, “
Reduction of the potential energy barrier and resistance at wafer-bonded n-GaAs/n-GaAs interfaces by sulfur passivation
,”
J. Appl. Phys.
110
(
10
),
104903
(
2011
).
33.
K.
Tanabe
,
A.
Fontcuberta
,
I.
Morral
,
H. A.
Atwater
,
D. J.
Aiken
, and
M. W.
Wanlass
, “
Direct-bonded GaAs∕InGaAs tandem solar cell
,”
Appl. Phys. Lett.
89
(
10
),
102106
(
2006
).
34.
C. G.
Van de Walle
, “
Band lineups and deformation potentials in the model-solid theory
,”
Phys. Rev. B
39
(
3
),
1871
1883
(
1989
).
35.
G.
Koley
and
M. G.
Spencer
, “
Surface potential measurements on GaN and AlGaN/GaN heterostructures by scanning Kelvin probe microscopy
,”
J. Appl. Phys.
90
(
1
),
337
344
(
2001
).
36.
D. V.
Lang
,
M. B.
Panish
,
F.
Capasso
,
J.
Allam
,
R. A.
Hamm
,
A. M.
Sergent
, and
W. T.
Tsang
, “
Measurement of heterojunction band offsets by admittance spectroscopy: InP/Ga0.47In0.53As
,”
Appl. Phys. Lett.
50
(
12
),
736
738
(
1987
).
37.
C.
Lian
, “
Wafer-fused aluminum gallium arsenide/gallium arsenide/gallium nitride heterojunction bipolar transistors
,” Ph.D. thesis (
University of Notre Dame
, n.d.).
38.
F. A.
Kish
,
D. A.
Vanderwater
,
M. J.
Peanasky
,
M. J.
Ludowise
,
S. G.
Hummel
, and
S. J.
Rosner
, “
Low‐resistance Ohmic conduction across compound semiconductor wafer‐bonded interfaces
,”
Appl. Phys. Lett.
67
(
14
),
2060
2062
(
1995
).
39.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley-Interscience
,
Hoboken, NJ
,
2007
).
40.
E.
Dobročka
and
J.
Osvald
, “
Influence of barrier height distribution on the parameters of Schottky diodes
,”
Appl. Phys. Lett.
65
(
5
),
575
577
(
1994
).
41.
J. P.
Donnelly
and
A. G.
Milnes
, “
The capacitance of p-n heterojunctions including the effects of interface states
,”
IEEE Trans. Electron Devices
14
(
2
),
63
68
(
1967
).
42.
C.
Chaneliere
,
J. L.
Autran
, and
R. A. B.
Devine
, “
Conduction mechanisms in Ta2O5/SiO2 and Ta2O5/Si3N4 stacked structures on Si
,”
J. Appl. Phys.
86
(
1
),
480
486
(
1999
).
43.
P.
Reddy
,
D.
Khachariya
,
W.
Mecouch
,
M. H.
Breckenridge
,
P.
Bagheri
,
Y.
Guan
,
J. H.
Kim
,
S.
Pavlidis
,
R.
Kirste
,
S.
Mita
,
E.
Kohn
,
R.
Collazo
, and
Z.
Sitar
, “
Study on avalanche breakdown and Poole–Frenkel emission in Al-rich AlGaN grown on single crystal AlN
,”
Appl. Phys. Lett.
119
(
18
),
182104
(
2021
).
44.
F.-C.
Chiu
, “
A review on conduction mechanisms in dielectric films
,”
Adv. Mater. Sci. Eng.
2014
,
e578168
.
45.
J.
Liu
,
C.
Han
,
M.
Yang
,
W.
Liu
,
L.
Geng
, and
Y.
Hao
, “
High-performance GaN vertical Schottky barrier diode with self-alignment trench structure
,”
IEEE Trans. Electron Devices
69
,
5082
(
2022
).
46.
J.
Liu
,
M.
Xiao
,
Y.
Zhang
,
S.
Pidaparthi
,
H.
Cui
,
A.
Edwards
,
L.
Baubutr
,
W.
Meier
,
C.
Coles
, and
C.
Drowley
, “
1.2 kV vertical GaN fin JFETs with robust avalanche and fast switching capabilities
,” in
IEEE International Electron Devices Meet (IEDM)
(
2020
), pp.
23.2.1
23.2.4
.
47.
A.
Panglosse
,
P.
Martin-Gonthier
,
O.
Marcelot
,
C.
Virmontois
,
O.
Saint-Pe
, and
P.
Magnan
, “
Dark count rate modeling in single-photon avalanche diodes
,”
IEEE Trans. Circuits Syst. I: Regular Pap.
67
(
5
),
1507
1515
(
2020
).
You do not currently have access to this content.